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EXECUTIVE SUMMARY 
Deep learning networks today have accomplished a great deal but are hitting bottlenecks as 

they scale to more complex tasks and bigger models. Researchers attempt to break through the 

bottleneck by adding more compute power and training data. These enormous models consume 

vast amounts of power, limiting scalability and creating environmental damage. We need a new 

algorithmic approach to achieve breakthroughs in performance and scalability. 

 

Although deep learning techniques use neuroscience-like terminology, in fact they operate very 

differently than the human brain. Unlike deep learning networks, the brain is highly efficient, 

requiring a mere 20 Watts to operate, less power than a lightbulb. At Numenta, we believe that 

by studying the brain and understanding what makes it so efficient, we can create new 

algorithms that approach the efficiency of the brain. 

 

How is the brain so efficient? There are many reasons, but at its foundation is the notion of 

sparsity. The brain stores and processes information as sparse representations. At any given 

time, only a small percentage of neurons in the brain are active. This sparsity may vary from 

less than one percent to a few percent of neurons being active, but it is always sparse. In 

addition, unlike deep learning networks, the connectivity between neurons in the brain is also 

highly sparse. In this whitepaper, we demonstrate the application of Numenta’s brain-inspired, 

sparse algorithms to machine learning. Using these algorithms on Xilinx Field Programmable 

Gate Array (FPGA)s and the Google Speech Commands (GSC) dataset, we show the 

substantial benefits of leveraging sparsity in order to scale deep learning models.  

 

Sparse networks perform inference 100 times faster than dense 

networks  

 

This dramatic speed improvement delivers great benefits, enabling: 

● Implementation of far larger networks using the same resource  

● Implementation of more copies of networks on the same resource 

● Implementation of more sophisticated sparse networks on edge platforms with 

limited resources where the corresponding dense networks do not fit 

● Massive energy savings and lower costs due to scaling efficiencies 

 

This technology demonstration is the beginning of a robust roadmap based on our deep 

neuroscience research. Not only can we achieve speed-ups on the GSC dataset by adding 

more sparse networks on chip, we also can apply these sparse techniques to other FPGA and 

other hardware platforms and more complex datasets like image recognition and natural 

language processing. Further, we can apply sparse networks to training tasks, which could lead 

to reduced training time and smaller training sets. Moreover, we plan to implement continual 

learning, which offers the promise of substantial benefits over batch training. Beyond sparsity, 

as we add more elements of our neocortical model, we expect additional benefits in 

unsupervised learning, robustness and sensorimotor behavior.   
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PERFORMANCE PROBLEMS IN DEEP LEARNING 
Over the last decade, deep learning networks have accomplished a great deal but are hitting 

bottlenecks as they scale to more complex applications. Researchers attempt to break through 

the bottleneck by creating ever larger models, adding more and more compute power, and more 

and more training data.1,2 Additionally, these enormous models consume vast amounts of 

power, limiting scalability and creating environmental damage.3 We believe that a new 

algorithmic approach is required to achieve breakthroughs in performance and scalability. 

 

In contrast to today’s deep learning models the brain is amazingly efficient, and provides a 

roadmap as to how to break through these scaling barriers. By studying the brain and 

understanding what makes it so efficient, we can create new algorithms based on neuroscience 

principles.  

 

At Numenta we have done exactly that for over 15 years. Our focus is the neocortex, which is 

the largest brain region, and the area primarily responsible for our intelligence. The foundation 

of neocortical efficiency is that the brain stores and processes information as sparse 

representations. In our past work we have described some of the benefits of sparsity to areas 

such as robustness and continuous learning. In this whitepaper we show that by applying the 

principles of sparsity to deep learning, we can lay the groundwork for breakthrough performance 

acceleration. By implementing Numenta’s sparse algorithms on Xilinx FPGAs we demonstrate 

these principles on inference tasks using the Google Speech Commands (GSC) dataset.  

 

Our results show a speed-up of over 100x1 

 

This technology demonstration is the beginning of a robust roadmap based on our deep 

neuroscience research. Not only can we achieve performance improvements on inference, the 

principles of sparsity can also lead to dramatically improved training times. Going beyond 

sparsity, as we incorporate more elements of our cortical model, we can shrink the size of 

training sets and reduce the need for large, manually labeled datasets. Moreover, we can 

enable continual learning similar to humans, which will eliminate the need to constantly retrain 

the model on the entire training set (batch training). Taken together, these techniques will 

eventually provide several orders of magnitude improvements in scaling. We also expect to see 

additional benefits in generalization, robustness, and sensorimotor behavior.  

 

  

 
1 A previous version of this paper, V1.0, claimed a 50x improvement. V1.0 featured a sparse-dense network, while 

V2.0 features a sparse-sparse network, yielding even greater performance improvements. 
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NEUROSCIENCE SOLUTIONS 
The Efficient Brain  
It is easy to intuit that the human brain solves problems much more efficiently than a deep 

learning network. Brains are estimated to require a mere 20 watts of power to perform a wide 

range of tasks, from reasoning to language, processing visual and auditory inputs and executing 

complex behaviors.4 In contrast, today’s deep learning networks are energy hogs and often 

require large amounts of training running on many servers for many days. For example, a recent 

study from University of Massachusetts, Amherst, showed that a single large Transformer 

model (a natural language processing model) consumed 656,000 kWh at a cost of $1M- $3M 

just to train the network.5 

 

How is the brain so intelligent with such amazing efficiency? One reason is that most of the 

neocortex is sparse. It stores and processes information in the context of extremely sparse 

neural activity and sparse connectivity. Sparsity is foundational to the comprehensive theory of 

cortical function we have developed called the Thousand Brains Theory of Intelligence6. It is 

beyond the scope of this paper to describe the theory in detail, but it is extensively documented 

in peer-reviewed papers7. It’s also described at a higher level in the book A Thousand Brains8. 

We discuss applying some additional aspects of the theory in the Future Work section. 

 

Sparse Representations  

One of the most remarkable observations about the neocortex is that no matter where you look, 

the activity of neurons is sparse; only a small percentage of neurons are sending signals at any 

point in time. The activity might vary from less than one percent to several percent, but it is 

always extremely sparse. In addition, unlike deep learning networks, the connectivity between 

neurons in the brain is also sparse. We have shown through mathematical analysis and 

simulation that sparsity enables efficient use of resources, generalization and robustness. For 

more details on the nature of sparsity, see Chapter 3 of our digital book Biological and Machine 

Intelligence (BAMI)9 and our paper, “How Can We Be So Dense? The Benefits of Using Highly 

Sparse Representations.”10  

 

Deep learning has traditionally used dense representations in which the neurons are both highly 

interconnected and highly active. As can be readily imagined, working with these dense 

implementations is computationally intensive. To compute the output for each and every neuron, 

the contribution of each connected neuron much be taken into consideration. This computation 

is usually formulated as a matrix multiplication, in which each row vector must be multiplied by 

each column vector.  

 

However, we can create sparse versions of these networks by borrowing several aspects of 

brain sparsity. Limiting the number of neurons that are active simultaneously is referred to as 

activation sparsity, while limiting the interconnectedness of the neurons is referred to as weight 

sparsity. In this sparse network, as a result of both the limited connectivity and limited 

activations, the matrix multiplications that are required to compute neuron outputs are 

performed on matrices for which the majority of matrix values are zero. When these sparse rows 

https://numenta.com/neuroscience-research/research-publications/papers/a-framework-for-intelligence-and-cortical-function-based-on-grid-cells-in-the-neocortex/
https://numenta.com/neuroscience-research/research-publications/papers/
http://www.athousandbrains.com/
https://numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-SDR.pdf
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
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and columns are multiplied together, a large fraction of the products can be eliminated. If an 

implementation is able to ‘skip’ the computation of the zero products, significant efficiency 

benefits can be derived from the network sparsity. Weight sparsity and activation sparsity can 

be leveraged independently or concurrently. The benefits of exploiting activation sparsity in 

conjunction with sparsified weights is multiplicative, enabling large efficiency improvements. For 

example, if both activation sparsity and weight sparsity approach 90%, on average only 1% of 

the products will have two non-zero values. The non-zero multiplications required could 

therefore be reduced by 100 fold! The challenge is to train networks to have high levels of 

sparsity without sacrificing accuracy, and then to pair them with hardware 

implementations that can efficiently focus computation on the non-zero products. 

 

Sparsity in Neural Networks  

Given the potential of sparse networks, it’s not surprising that the sparsification of neural nets 

has become increasingly discussed over the last few years. Today, a variety of open-source 

software libraries provide not only tools for sparsifying model weights, but also model runtimes 

that begin to leverage this sparsity to deliver improved inference performance. Unfortunately, 

fully exploiting these efficiency improvements can be surprisingly difficult with today’s hardware. 

Most systems perform best on dense computations, where the predictability of memory access 

patterns allows data to be prefetched in a timely manner, and the dense data packing enables a 

processor’s vector units to be leveraged to full effect. 

 

Furthermore, there is significant variation in the sophistication of techniques via which sparsity is 

introduced into a model. When removing, or ‘pruning’ weights, there are a variety of important 

considerations, including timing, whether to remove weights gradually or all at once, whether to 

control weight sparsity per layer or globally, and the criteria for selecting which weights to prune.  

 

These choices are extremely consequential and dictate the level of sparsity that can be 

achieved before model accuracy degrades irreparably. And, as can be readily appreciated, 

small differences in the final sparsity level can have significant impact on the potential for 

inference performance improvements. Numenta has developed techniques that allow the 

creation of extremely sparse models, while maintaining model accuracy. These techniques 

allowed us to remove 95% of the weights in our GSC CNN model, while delivering an accuracy 

equivalent to the original dense model. This sparsity level is close to the levels in the brain, and 

significantly higher than in machine learning models. It provides significant opportunity for 

performance improvements. 

 

While weight sparsity has become more commonplace, attempts to both promote and exploit 

sparsity in activations is extremely uncommon. Again, Numenta has developed techniques that 

allow for extreme activation sparsity while maintaining model accuracy.  
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In this paper we make two main contributions. Firstly, we illustrate that it is possible to construct 

highly sparse networks that deliver equivalent accuracy to their dense counterparts. Secondly, 

we highlight that this sparsity can be fully leveraged by today’s hardware, achieving 

performance improvements over the dense baseline that are an order-of-magnitude larger than 

typically discussed in contemporary literature. 

 

TECHNOLOGY DESCRIPTION 
To validate the efficiency of sparse networks, we compared inference performance between 

dense and sparse deep learning networks. In order to do so, we went through the following 

steps: 

 

1. Choose a dataset for the comparison. 

2. Create a sparse neural network for the dataset. 

3. Choose a hardware platform to run the comparison tests. 

4. Implement both the sparse and dense networks on the chosen hardware platform. 

5. Run performance tests on both networks. 

6. Compare the results. 

 

Choosing the dataset 
We chose the Google Speech Commands (GSC) dataset, which consists of 65,000 one-second 

long utterances of keywords spoken by thousands of individuals. The task is to recognize the 

word being spoken from the audio signal. This task is representative of modern embedded 

smart home applications that respond to speech commands. Competitive results on this dataset 

are in the range of 96-97% accuracy. 

 

Creating the sparse network 
We created the sparse network with highly sparse weights and activations, like in the neocortex. 

Unlike many contemporary approaches to sparse networks we introduce sparsity at the 

beginning of the training process, rather than simply pruning weights after initial training is 

completed. This approach allows us to create extremely sparse networks that retain their 

accuracy. To achieve this result, we made two modifications to the standard deep learning layer 

(see also Figure 1): 

1. We created sparsity in the weights by initializing the weights using a sparse mask, 

that only permits a fraction of the weights to contain non-zero values. This sparse 

mask defines the placement of the non-zero weights, and the remainder of the 

weights are clamped to zero throughout the life of the network.  

2. We created sparse activations by retaining only the top-k active units of each layer; 

the rest are set to zero. This k-winner step is non-linear and can be thought of as a 

substitute for the ReLU function. 

 
The above formulation is an extension of our previous work on the HTM Spatial Pooler11, 

adapted for neural networks trained with back-propagation.  

https://numenta.com/neuroscience-research/research-publications/papers/htm-spatial-pooler-neocortical-algorithm-for-online-sparse-distributed-coding/
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Our dense GSC network is a standard convolutional network with two convolutional layers, a 

linear hidden layer plus an output layer, as shown in Table 1. As is standard practice in speech 

processing, the raw audio signals are converted to 32-band Mel spectrograms before being fed 

to the network. Our sparse GSC network is identical to the dense network except it contains 

sparse weights and the k-winner take all function as described above. The accuracies of our 

sparse and dense networks are in the range of 96.4% to 96.9%. The sparse network contains 

127,696 non-zero weights compared to 2,522,128 weights in the dense network, or about 95% 

sparse. The activations in the sparse network range from 88% to 90% sparsity (i.e. 10-12% of 

the neurons are ‘winners’), depending on the layer. 

 

Layer Filter/neuron 

count 

Filter size Filter stride Output Shape 

Input - - - 32x32x1 

CONV1 64 5x5x1 1 28x28x64 

MaxPool1 - 2x2x1 2 14x14x64 

CONV2 64 5x5x64 1 10x10x64 

MaxPool2 - 2x2x1 2 5x5x64 

Flatten - - - 1600x1 

Fully Connected 1500 1600x1 - 1500x1 

Fully Connected 12 1500x1 - 12x1 

Table 1: Architecture of our CNN network trained on the GSC data 

 

 
Figure 1: Standard dense layer vs our sparse layer. Our sparse layer contains both sparse 
weights and sparse activations. 
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The sparsity levels in our networks are much higher than what is commonly seen in the deep 

learning literature. In such high sparsity regimes, it is possible for a small subset of the neurons 

to dominate and become active for a large percentage of the patterns. In this situation the 

network is limited to a small fraction of the possible patterns. To address the issue, we employ a 

boosting function during training, which favors units that are inactive.  

 

Details of our sparse network, other implementation issues, and our use of the GSC and other 

datasets are discussed in Numenta’s research paper, “How Can We Be So Dense? The 

Benefits of Using Highly Sparse Representations.”10 

 

Like any traditional network hyperparameters, the degree of sparsity influences the accuracy of 

the model. Accuracy equivalent to the dense counterpart can be achieved even with high levels 

of sparsity, and the sparse network will typically also demonstrate improved generality and 

improved noise robustness compared to the dense9. See Box 1 for more details on how sparsity 

can yield comparable accuracy. Sparsity levels can be increased even further, with a slight 

impact to accuracy, effectively trading increased performance for a slight reduction in accuracy. 

In this paper, we only consider sparse networks with equivalent accuracy to the original dense 

model, but it should be recognized that even greater speedups could be achieved if accuracy 

requirements are relaxed. 

  

For our hardware implementation, we apply block sparsity and other structured sparsity spatial 

constraints to the weights of our sparse network. For example, to create a block-sparse matrix, 

the weight matrix is structured in a way where a large matrix is divided into smaller matrices with 

most blocks containing only zero values and a few blocks containing only non-zero values. This 

structure aids in compression and efficiently using the on-chip processing logic, and we found 

that, correctly architected, this constraint on sparsity could be introduced without negatively 

impacting the levels of sparsity achievable or the accuracy of the sparse network. Similarly, 

light-weight constraints are applied to the locations of the activations. The weights for both 

sparse and dense networks are quantized to 8 bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257
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Box 1: Sparsity, accuracy, and dimensionality  

It may not be intuitive how introducing sparsity can yield comparable accuracy. One would 

expect that if you take information away, you will take a hit on accuracy, so how is it possible 

to sparsify and retain accuracy? One answer has to do with dimensionality. 

  

Even though most values in a sparse network are zero, you can still convey a lot of 

information with enough dimensions. To illustrate how, imagine the following scenario. 

  

Suppose a doctor wants to describe a patient with a series of yes/no questions, where a 

“yes” can be thought of as a non-zero. Here’s an example with 10 questions: 

1. Is the patient female?  

2. Is the patient male?  

3. Is the patient above 60?  

4. Is the patient between 40 and 60?  

5. Is the patient between 30 and 40?  

6. Is the patient between 20 and 30?  

7. Is the patient younger than 20?  

8. Is the patient taller than 6 feet?  

9. Is the patient between five and 6 feet?  

10. Is the patient shorter than 5 feet? 

  
A typical description will have three yes’s and 7 no’s (three non-zeros). Those answers will 

give the doctor limited information about the patient. Now imagine a second description with 

many more questions, but you are only allowed two yes’s. You can now create questions 

that are more nuanced, such as: 

1. Is the patient female and taller than 6 feet?  

2. Is the patient female and between five and 6 feet?  

3. Is the patient female and shorter than 5 feet? 

4. Is the patient male and taller than 6 feet?  

5. Is the patient male and between five and 6 feet?  

6. Is the patient male and shorter than 5 feet? 

7. Is the patient female and above 60?  

8. Is the patient female and between 40 and 60?  

9. Is the patient female and between 30 and 40?  

10. Is the patient female and between 20 and 30?  

11. Is the patient female and younger than 20?  

12. Etc. 

  
Now the yes’s convey even more information than in the first example. Here you can achieve 

the same description with only two yes’s instead of three. If you were allowed hundreds or 

thousands of questions, even one yes could provide a lot of information about the patient.  

 

In the example, the number of questions is the dimensionality. In summary, the higher the 

dimensionality, the more informative the non-zero’s are, giving you more information about 

the entire set. If you’re interested in exploring the topic of sparsity and dimensionality further, 

see this research meeting. 

 

https://www.youtube.com/watch?v=3KDsUgUPGM0
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Choosing a hardware platform 
In sparse systems a majority of the computation results are zero (since a majority of the inputs 

are also zero). If the machine knows in advance the location of the zeros, it can skip many 

useless operations. In addition only the non-zero weights need to be stored, which results in a 

much smaller memory footprint. In principle this idea is simple but in practice it is challenging to 

find hardware architectures that can exploit both these properties of sparse systems. 

 

We chose an FPGA (Field Programmable Gate Array) as the hardware platform to run the 

performance tests because of the flexibility it provides in handling sparse data efficiently. 

FPGAs can do as many arbitrary functions in parallel as it has logical elements (thousands to 

several million). When processing sparse data, an FPGA can be programmed to ignore zeros 

and only compute non-zero values, in addition to computing functions such as k-winner. This 

allows the FPGA implementation to efficiently take full advantage of the sparsity. In contrast, it is 

currently not possible to parallelize these efficiently in a GPU or CPU. In addition, random 

access to memory is far more granular and efficient on an FPGA, enabling FPGA 

implementations to efficiently handle the unstructured access patterns in sparse networks. This 

ability to program the FPGA in a flexible manner allows it to process sparse data orders of 

magnitude faster and much more energy-efficiently than a CPU or GPU. 

 

Overall there are two main reasons why sparse networks are more efficient than dense 

networks on an FPGA platform: 

 
● Fewer computations because the logic on chip can skip zeros, enabling computations 

with non-zero elements to be performed efficiently 

● Smaller memory footprint because only non-zero elements are stored, enabling the chip 

to run more networks simultaneously 

 
Note that these two reasons have a multiplicative effect when considering overall system 

throughput. For example, if a sparse network is twice as fast as the dense network, and you can 

fit three times as many networks on the chip, the sparse system will process six times as many 

inputs per second as the dense version. Depending on the achievable sparsity of the network, 

these two factors contribute to a net performance improvement that can be several orders of 

magnitude higher. 

 

For our technology demonstration, we chose two off-the-shelf Xilinx FPGAs and Platforms: the 

Alveo™ U250 and the Zynq™ UltraScale+ ZU3EG. The Alveo U250 is a powerful platform 

designed for datacenters, while the Zynq class of FPGAs is much smaller and designed for 

embedded applications. Table 2 shows the relative capabilities of the FPGA platforms. As we 

show later, our sparse network is able to run efficiently on even the smallest of these platforms 

(unlike the dense network). 
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Note that although we feel FPGAs are an ideal platform for this approach, we also believe that 

current generation CPUs and GPUs would achieve benefits from sparsity, just not as dramatic. 

In the future, we plan to propose exciting architecture enhancements to CPUs and GPUs that 

would enable greater use of sparsity for substantial performance gains.   

 

Implementing the networks 
We ran the dense and sparse networks on the above Xilinx FPGA platforms. We also used 

FPGA design tools for programming, block diagram, functional testing, regression and overall 

integration.  

 

We implemented the dense GSC network using the Xilinx software “Vitis AI,” which is a highly 

optimized solution for deploying deep learning networks on the Xilinx chips. After specifying the 

parameters and weights, the software generates a complete FPGA design and the required 

software “drivers” at the OS level. 

 

We implemented the sparse network using a tool called Proximus (see Appendix for details). 

The sparse GSC network implementation is made up of sparse convolutional layers, sparse 

linear layers, k-winner-take-all modules, plus input/output (host interface) modules.  

 

Two different sparse networks were implemented: 

1. A ‘Sparse-Dense’ implementation: in this version the hardware implementation took full 

advantage of the sparse weights, but did not take advantage of the sparsity in the 

activations (i.e. they were considered dense). This is the simplest form of sparse 

network to implement, as the sparsity pattern in the weights is pre-determined for a 

specific network and the hardware implementation can be explicitly optimized for this 

pattern. In contrast, while only k neurons will be selected as active at each layer, the 

location of these winners is input dependent and is constantly changing. 

2. A ‘Sparse-Sparse’ implementation : in this version the hardware implementation took full 

advantage of the sparsity in both the weights and the activations. 

 

 

 

FPGA platform System logic 

cells  

Internal 

Memory  

DSP slices System power 

Alveo U250 1,728,000 54MB 12,288 225W 

Zynq™ UltraScale+ ZU3EG 154,000 0.95MB 360 24W 

 
Table 2: This table lists the relative capabilities of the two Xilinx FPGA platforms. 
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We compare the performance of these two sparse networks against the dense network 

baseline, and each other, to highlight the benefits of fully exploiting the sparsity in the model. 

Performance details of the Sparse-Dense implementation have been previously discussed by 

Numenta12. 

 

Since each sparse network instance is small compared to a dense network instance, multiple 

sparse GSC network instances can fit in one FPGA. In the FPGA implementation described 

below, using an Alveo U250 board, up to five sparse-sparse GSC networks fit in one “Super 

Logic Region” (SLR). There are four SLRs on an Alveo U250, which means there are 20 

sparse-sparse network instances on the full Alveo board, compared to four total dense network 

instances (one per SLR). 

 

For more information on implementation details, see the Appendix.  

 

Running the performance tests 
We ran the performance tests on each of the FPGA platforms, installed in a server. The dense 

network and sparse networks tests ran on the same card, sequentially, by downloading the 

selected network into the card and then feeding in input data. For the purposes of this test, the 

input data is a repeating sequence of 50,000 pre-processed audio samples (audio sample 

processing is not part of these tests). 

 

 

 

 

FPGA platform Network type Throughput words/sec Speedup over dense 

Alveo U250 Dense 3,049 - 

Alveo U250 Sparse-Dense 35,714 11.71 

Alveo U250 Sparse-Sparse 102,564 33.63 

    

ZU3EG Dense 0 - 

ZU3EG Sparse-Dense 21,053 Infinite 

ZU3EG Sparse-Sparse 45,455 Infinite 

 
Table 3: Shows throughput, measured as the number of speech words processed 
per second, for a single dense, sparse-dense and sparse-sparse network on two 

different platforms. The throughput of the sparse-sparse network on the Alveo U250 
is 33.6X times faster than the fastest dense configuration. 
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DETAILED RESULTS 
In this section we describe the measured performance of dense vs. sparse networks on the 

various platforms. For sparse networks we show a couple of different configurations where we 

vary the number of network copies that are placed on the chip. We compare performance using 

three different metrics: throughput, power usage, and resource utilization.  

 

 

Throughput 
Our throughput metric measures the total number of inputs processed per second. Tables 3 and 

4 show the throughput on each platform for both dense and sparse networks. Table 3 presents 

the results for a single network on the chip. As can be seen in the right-hand columns of Table 

3, the sparse networks outperform the dense network baselines by a considerable margin. On 

the Alveo U250 a single sparse-dense network is more than 10 times faster than a single dense 

network, while a single sparse-sparse network is over 30 times faster. These speedups are 

clearly highlighted in the left-most set of columns in Figure 2. 

 

Since the large Alveo U250 has sufficient resources to accommodate multiple networks on chip, 

Table 4 shows full-chip throughput numbers, where we pack as many copies of each network as 

possible onto the FPGA. The U250 can accommodate 4 copies of the dense network, 24 copies 

of the sparse-dense network and 20 copies of the sparse-sparse network (The additional logic 

required to route the sparse activations to the appropriate sparse weights increases the size of 

the sparse-sparse implementation, slightly reducing the full-chip network count in comparison to 

the sparse-dense version. However, the performance benefits of leveraging activation sparsity 

more than compensate for the decreased network density). With 24 network copies on an Alveo 

U250, the sparse-dense networks can process data at 689,000 words/second, more than 56 

times faster than the dense implementation on that platform, while the sparse-sparse networks 

FPGA platform Network type Number of 
networks on 

chip 

Full chip throughput 
(words/sec) 

Full chip 
speedup 

Alveo U250 Dense 4 12,195 - 

Alveo U250 Sparse-Dense 24 689,655 56.5 

Alveo U250 Sparse-Sparse 20 1,369,863 112.3 

     

ZU3EG Dense 0 0 - 

ZU3EG Sparse-Dense 1 21,053 Infinite 

ZU3EG Sparse-Sparse 1 45,455 Infinite 

 
Table 4: Shows throughput, measured as the number of speech words processed per 

second, for dense, sparse-dense and sparse-sparse networks on two different platforms for 
full-chip configurations. The throughput of the 20 network sparse-sparse configuration on 

the Alveo U250 is 112.3X times faster than the fastest dense configuration. 
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can process data at 1,369,000 words/second, more than 112 times faster than the dense 

implementation. These speedups are clearly illustrated in the right-most set of columns in Figure 

2. It is also interesting to note that a single sparse-dense or sparse-sparse network, a small 

fraction of what can be accommodated on a U250, nevertheless outperforms the full-chip dense 

result by 2.9X and 8.4X respectively!  

 

 
Figure 2: An illustration of the performance benefits of sparse networks, for both single-

network and a full-chip (U250) configurations 
 

Note that the per network speed drops as we pack more networks on chip. This effect is likely 

due to communication bottlenecks, since the amount of data that has to be transferred per 

second grows with the number of networks running in parallel, coupled with the slight reductions 

in clock speed that can be required for full-chip configurations. Still, the gain in overall 

throughput is far more than the drop in each network’s speed. 

 

The small ZU3EG FPGA results shown in Tables 3 and 4 are also extremely interesting. The 

dense GSC network cannot fit on that system. The sparse networks are significantly smaller and 

thus we can fit a single sparse-dense or sparse-sparse network on that platform (see the 

Resource utilization section below). Interestingly, the throughput of that single sparse-sparse 

network on the small chip is 3.7X times faster than the total throughput of four dense networks 

running on the powerful Alveo U250 (45,455 words/sec vs 12,195 words/sec). This result opens 

up new product categories where ultra-small, energy efficient, embedded platforms can run 

deep learning based applications without compromise, helping make “AI at the Edge” a reality. 
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Figure 3: An illustration of the performance benefits of sparse-sparse networks, 

compared with a sparse-dense baseline, for both single-network and full-chip (U250) 
configurations 

 

In addition to comparing the sparse networks to the dense baseline network, we can also 

compare the sparse networks to each other. Remember, in the sparse-dense implementation 

only sparsity in the weights is exploited for computational efficiency, while in the sparse-sparse 

version sparsity in both the weights and the activations is exploited. By exploiting both elements 

of sparsity we double the performance of the sparse network (as illustrated in Figure 3), allowing 

the sparse-sparse implementation to increase throughput by two orders of magnitude compared 

with the dense baseline! 

 

Power usage 
Power utilization is rapidly becoming an important criterion in measuring the efficiency of deep 

learning systems. We use the metric words/second/watt to evaluate power usage. Table 5 

shows the numbers for dense vs. sparse networks on the two platforms.  

 

The relative efficiency column on the right measures the power improvement of each 

implementation relative to the dense network baseline on the Alveo U250. As can be seen, the 

20 network sparse configuration on the Alveo U250 is over 50X more power efficient than the 

dense configuration, while the sparse-sparse configuration is over 100X more power efficient. 

Similarly, while the absolute performance delivered by the ZU3EG is lower than the U250, the 

power efficiency is significantly higher, providing a compelling AI at the edge solution when 

combined with the sparse networks. 
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Note that measuring exact power usage is tricky. In Table 5 we use the max wattage 

measurement of the development board as our power consumption. A specific product using a 

custom board should get significantly better absolute power usage across the board, perhaps by 

as much as a factor of 4. Nevertheless, we expect the general trends and the relative power 

efficiency of sparse networks to largely reflect the results shown in Table 5. It is indisputable 

that sparse networks are far more efficient than dense networks. 

 

 
 

  

FPGA 
platform 

System 
power 

Network type Number of 
networks 

Words/sec/ 
watt 

Relative 
efficiency 

Alveo U250 225 Dense 4 54 100% 

      

Alveo U250 225 Sparse-Dense 1 158 292% 

Alveo U250 225 Sparse-Dense 24 3065 5675% 

      

Alveo U250 225 Sparse-Sparse 1 455 842% 

Alveo U250 225 Sparse-Sparse 20 6088 11274% 

      

ZU3EG 24 Dense 0 0 0 

ZU3EG 24 Sparse-Dense 1 877 1624% 

ZU3EG 24 Sparse-Sparse 1 1893 3505% 

 
Table 5: Overall power usage, measured in words processed per second per watt, for each 

configuration. The relative efficiency column, measured against the dense U250 
implementation, shows that the sparse networks are far more efficient than the dense 

configuration. 
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Resource utilization 
FPGA platforms have a diverse set of compute and memory components, each with different 

but overlapping capabilities. Optimizing any implementation often involves balancing between 

these various resources. Table 6 shows the percentage utilization of these resources for various 

sparse network configurations (we did not have access to the dense network utilization 

numbers). 

 

 

As can be seen from the first and third rows of the table, a single sparse-dense or sparse-

sparse network takes up a tiny percentage of the overall resources on an Alveo U250. This 

result means that you can have several networks running in parallel, while still leaving 

significant room for the rest of the application. Sparse networks offer much more flexibility than 

dense networks in achieving high throughput while still allowing room for other complex 

application code. 

 

Finally, while the sparse-sparse implementations do consume more resources than their 

sparse-dense counterparts, the significant throughput increases achieved by sparse-sparse 

implementation more than offsets the increase in resource utilization. 

 

  

FPGA 
platform 

Network type Network 
copies 

LUT usage BRAM 
usage 

URAM 
usage 

DSP 
 

Alveo U250 Sparse-Dense 1 1.64% 1.72% 2.66% 3.56% 

Alveo U250 Sparse-Dense 24 38.26% 50.29% 63.75% 85.46% 

Alveo U250 Sparse-Sparse 1 2.97% 4.50% 4.06% 3.07% 

Alveo U250 Sparse-Sparse 20 63.12% 86.93% 96.56% 61.44% 

ZU3EG Sparse-Dense 1 49% 80% NA 94% 

ZU3EG Sparse-Sparse 1 79.6% 95.2% NA 88.3% 

 
Table 6: FPGA resource utilization for different sparse configurations.  
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Comparison with GPUs 
Our primary goal in this whitepaper is to highlight the performance advantages of sparse 

representations vs. dense representations. To do so, we held the platform constant, 

implementing both sparse and dense networks on the same FPGA platforms. We did not 

implement an optimized sparse network on GPUs. In this section we provide some approximate 

performance numbers of the dense network on two GPU systems to get a rough sense of the 

relative speeds. 

We used PyTorch to run the dense network on two popular NVIDIA platforms: the Tesla™ K80 

and the Tesla™ V100. Table 7 shows the throughput of the dense network on these platforms 

for various batch sizes (GPU performance is optimized for high batch sizes). Overall, the dense 

network has a consistently higher throughput on GPUs than does the dense network on the 

Alveo. However, our sparse networks are significantly faster than any of the dense 

implementations, FPGA or GPU.  Although it is difficult to compare across widely different 

architectures, there is no doubt that an FPGA running a sparse network as described here will 

have a substantial price performance advantage over a GPU running a dense network. 

Note that these numbers should only be used to get a very rough sense of comparative 

performance. There are numerous factors that come into play, such as transistor counts, price 

points, chip size, and manufacturing density. In addition to the differences between chips, the 

software implementations are very different. The PyTorch implementation uses 32 bit floating 

point numbers, whereas the Alveo implementation uses 8 bit integer numbers. It is likely that the 

GPU throughput of the dense network could be increased with a more optimized 

implementation. Nevertheless, the large gap between the sparse and dense network 

throughputs shows the clear advantages of our optimized sparse implementations. 

 

Platform Network type Batch size Overall throughput 

Alveo U250 Dense 500 12,195 

Alveo U250 Sparse-Dense N/A (streaming) 689,655 

Alveo U250 Sparse-Sparse N/A (streaming) 1,369,863 

Tesla K80 Dense 256 16,024 

Tesla K80 Dense 1024 17,710 

Tesla K80 Dense 8192 20,118 

Tesla V100 Dense 256 45,450 

Tesla V100 Dense 1024 61,638 

Tesla V100 Dense 8192 54,301 

 
Table 7: Throughput for dense networks on two GPU platforms for different batch 

sizes. Our sparse networks significantly outperform all dense implementations. 
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Recently NVIDIA has started to invest more heavily in sparsity, particularly in their Ampere 

architecture13. Our networks are much sparser than the ones they showed and our networks 

incorporate both activation sparsity as well as weight sparsity. Given the promise of such highly 

sparse networks, it is possible that additional improvements to the underlying GPU architecture 

could eventually lead to much larger benefits. 

 

Summary of results 
As can be seen throughout the above discussion, sparse networks offer significant performance 

benefits over dense networks. An individual sparse network is faster than a comparable dense 

network. Since sparse networks are much smaller than dense networks, more copies can be 

implemented on the same chip, improving throughput even further. Sparse networks are far 

more energy efficient, and our optimized sparse implementation is significantly faster than 

dense networks running on more powerful chips (both FPGA and GPU). 

 

FUTURE WORK 
This technology demonstration validates that sparsity will be a key factor in scaling deep 

learning networks. We are working with strategic partners to commercialize this technology. 

 

Future work will proceed in a couple of directions. First, these impressive performance results 

are not specific to the GSC dataset or the particular CNN network presented in Table 1. Rather, 

Numenta has developed a generalized approach for creating highly sparse networks for which 

the potential efficiency gains associated with the network can be realized on current hardware 

architectures, such as FPGAs, We are in the process of applying these techniques to more 

complex networks (such as ResNet and Transformer networks), more challenging datasets, and 

on additional hardware platforms, with the goal of clearly demonstrating the broad applicability 

of these techniques to deep neural architectures. Second, this whitepaper has focused on 

inference tasks, but the same principles apply to training. We plan to create a technology 

demonstration to validate that sparsity can significantly improve the efficiency of training deep 

learning networks.  

 

Sparsity is foundational to the Thousand Brains Theory, but it is only the beginning. Deep 

learning models have had significant challenges beyond performance that can be addressed by 

implementing more of the neocortical theory. To begin with, a major challenge faced by these 

networks is an inability to learn continuously. As new data arrives, a large model needs to be 

retrained in batch mode in order to update it, using huge additional resources. Our brains adapt 

continuously with each new data point. Moreover, today’s machine learning models require 

supervised learning with labeled data while your brain is able to rapidly classify similar objects 

without labeling. The Thousand Brains Theory neuron model describes how a brain is 

continuously updated and how it learns without supervision. In the future we can apply these 

techniques to machine learning in order to enable continuous learning and unsupervised 

learning. 
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Another major challenge is that deep learning models are notoriously brittle14. Small changes to 

the input or missing information can completely throw off inference. The Thousand Brains 

Theory describes how our brains constantly make predictions, and constantly improves by 

learning from mistakes in these predictions. The ability to make accurate structured predictions 

explains why our brains are so robust. It explains how we are able to effortlessly fill in missing 

pieces of a scene, such as the lower half of a person blocked by a car door. The same principle 

can be applied to improve the robustness of deep learning models. 

 

Finally, deep learning models have yet to be successfully applied to sensorimotor behavior in 

advanced robotics. If we want to create more powerful machine intelligence, we need to be able 

to make decisions and implement actions. The Thousand Brains Theory, which Jeff Hawkins 

writes about in his recent book, A Thousand Brains8, explains how reference frames provide a 

framework to extend the success of machine intelligence in static tasks to sensorimotor tasks in 

robotics.  

CONCLUSION 
Since the beginning of the field of AI over fifty years ago, scientists have speculated that the 

brain, as the only demonstration of intelligence in the universe, can show the path towards 

implementing machine intelligence. Yet, over these many years, and in spite of spectacular 

growth in the field of neuroscience, little has been made of this possibility. Instead, the field of AI 

has focused on inefficient techniques enabled by vast amounts of compute power and data, 

quite different from the neocortex. As these techniques reach their inevitable limitations, turning 

to the brain for insights has become not just an alternative, but a necessity, to advance the field. 

Today, with a far more complete understanding of the human brain, we now see a clear 

roadmap on how to apply these concepts to building efficient, intelligent machines. We propose 

a starting point of using sparsity to dramatically improve the performance of deep learning 

networks. As we continue to implement more and more of the Thousand Brains Theory in 

algorithms, we are confident that we are finally on the path to machine intelligence.  
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REVISION HISTORY 
The table notes changes between versions. Minor changes such as small clarifications or 
formatting changes are not noted. 
  

Version Date Changes 

1.0 Oct 30, 2020 Initial release 

2.0 May 20, 2021 

Initial release showed 50x performance improvements using 

sparse-dense implementation. V2.0 shows 100x 

performance using sparse-sparse implementation 

 

APPENDIX 
Reproducibility 
The performance tests can be reproduced by a third party on their own Alveo U250 board. 
Contact sparse@numenta.com if you’re interested in learning more.  

 

Glossary 
• High Level Synthesis (HLS): an automatic generation of electronic circuitry from a high-level 

algorithmic description (for example in C++). 

• Register Transfer Level (RTL):  a design abstraction which models a synchronous digital circuit 

in terms of the transfer of data between hardware registers (memory or flip-flops), and the logical 

operations performed on that data. 

• Super Logical Region (SLR): Most of Xilinx FPGA devices in the “Alveo” line consist of multi-

chip-modules comprised of several physical chips. Each of the chips are referred to as an 

SLR. It is an important aspect in the design of a system because there is a slight timing 

impact in the transition between the SLRs and the number of connections is limited. 

• Proximus: A proprietary FPGA integrated development environment that allows the design 

of systems at the block level by expressing the overall function as communicating parallel 

processes.  

• Vitis: Part of the Xilinx FPGA design tool offering, this is the high-level platform which deals 

with software components, hardware drivers, high level design entry and HLS. Vitis 

translates high level designs (C++) into RTL. 

• Vitis AI: Xilinx library-based AI offering for FPGA design which allows the designer to 

parameterize a wide range of different AI networks and map them to a subset of available 

chips and cards. 

mailto:sparse@numenta.com
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• Vivado: Xilinx physical design integrated development environment (IDE) in the Vitis 

platform, used to do the mapping of an electronic design to the FPGA chip, using RTL-

synthesis. 

 
 

Design Flow 
1.  Using Proximus, a block diagram is developed which consists of communicating 

functional parts, in this case the different layers of a neural network (CNN1, CNN2 etc.). 

Each block can contain a purely functional description (for example in C++) or contain 

more levels of blocks which eventually contain simpler functional descriptions (for 

example a multiplication). Functionality is verified at this level and given some 

assumptions (e.g. # of cycles for operations), performance can be estimated and trade-

offs can be made at this point in the design.  

2. The design is then exported into the Xilinx tool set, where Vitis generates the hardware 

drivers and does High Level Synthesis. Circuit simulation can be done at the HLS stage. 

3. Assuming there are no timing problems found, Vivado then does RTL and physical 

synthesis, place and route, timing verification and bitsteam generation. Circuit simulation 

can be done at the RTL level during this stage. 

4. The design is then transferred to the physical FPGA. Proximus then connects to the 

FPGA hardware and performs the overall system execution. 

 

 

Sparse network implementation details 
The next several figures walk through the sparse network implementation details.  

 
Figure A. Single sparse-sparse GSC network in one SLR, shown in Proximus. The right side of 
the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. SLR0 is 
highlighted, and the left side of the figure shows the block diagram of a single copy of the GSC 
sparse-sparse network instance which is implemented in this SLR. 
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Figure B. Multiple sparse-sparse GSC networks in one SLR, shown in Proximus. The right side 
of the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left 
side of the figure shows five instances of the sparse-sparse GSC network which are 
implemented in one SLR. The inputs are distributed into these five networks in round robin 
fashion using a map reduce algorithm. Each box in the left side of the diagram contains C++ 
code implementing the function of the network layer. 
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Figure C. Multiple sparse-sparse GSC networks in one SLR, shown in Vivado, after the design 
is exported from Proximus into Vitis, and high-level synthesis has run.  Figure C is equivalent to 
Figure B, but shown in a different tool view. The dataflow is shown top-down in Proximus 
(Figure B) and left-right in Vivado (Figure C). Each box in Figure C contains synthesized RTL 
(Register Transfer Level). 
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Figure D. Multiple GSC networks distributed across 4 SLRs, shown in Proximus. The right side 
of the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left 
side of the figure shows the full chip design, with each “gsc_hw” block equivalent to the block 
diagram shown in Figure B, representing one SLR for a total of four SLRs. Each “gsc_hw” block 
contains 5 copies of the sparse-sparse GSC network, with a total of 20 networks implemented 
on the chip. 
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Figure E: The same, full design of 5 networks in each of 4 SLRs on Alveo U250, in flattened 
(hierarchy removed) view, shown in Proximus.  
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Figure F. This is the entire design (20 network copies distributed over 4 SLRs) shown in Vivado. 
The block level diagram shows the 5x4 logical designs with their two-level distribution and map-
reduce logic. In addition, to reduce the dependency on slight timing-differences between 
modules, each one has a FIFO module on its input as well as output.   
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Figure G. Pictured here is the physical 
layout of 5 sparse-sparse instances per 
SLR, 20 in total, on the Alveo U250. 
 
The parts in the design are built 
automatically by Vitis-HLS, which 
translates C++ from Proximus into RTL. 
Then Vivado synthesizes RTL into FPGA 
gate level and places and routes the 
design on the FPGA. 
 
In this Vivado physical view (which is the 
result of the “place and route” process) 
the 4 SLRs can be seen clearly stacked 
vertically. You can also see the “static 
region” which is the space reserved for 
the host interface (PCI-e 3.0x16) as well 
as the DDR4 interfaces to the 4 parallel 
memory DIMM available on the board.  
The logic is smeared as a large number 
of tiny pieces (LUT, DSP, BRAM, URAM 
and routing) and depicted in light blue.  
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