

Sparsity Enables 100x Performance
Acceleration in Deep Learning Networks

A Technology Demonstration

Numenta Whitepaper

VERSION 2.0, May 20, 2021
© Numenta, Inc. 2021
https://numenta.com/

https://numenta.com/

2

EXECUTIVE SUMMARY
Deep learning networks today have accomplished a great deal but are hitting bottlenecks as

they scale to more complex tasks and bigger models. Researchers attempt to break through the

bottleneck by adding more compute power and training data. These enormous models consume

vast amounts of power, limiting scalability and creating environmental damage. We need a new

algorithmic approach to achieve breakthroughs in performance and scalability.

Although deep learning techniques use neuroscience-like terminology, in fact they operate very

differently than the human brain. Unlike deep learning networks, the brain is highly efficient,

requiring a mere 20 Watts to operate, less power than a lightbulb. At Numenta, we believe that

by studying the brain and understanding what makes it so efficient, we can create new

algorithms that approach the efficiency of the brain.

How is the brain so efficient? There are many reasons, but at its foundation is the notion of

sparsity. The brain stores and processes information as sparse representations. At any given

time, only a small percentage of neurons in the brain are active. This sparsity may vary from

less than one percent to a few percent of neurons being active, but it is always sparse. In

addition, unlike deep learning networks, the connectivity between neurons in the brain is also

highly sparse. In this whitepaper, we demonstrate the application of Numenta’s brain-inspired,

sparse algorithms to machine learning. Using these algorithms on Xilinx Field Programmable

Gate Array (FPGA)s and the Google Speech Commands (GSC) dataset, we show the

substantial benefits of leveraging sparsity in order to scale deep learning models.

Sparse networks perform inference 100 times faster than dense

networks

This dramatic speed improvement delivers great benefits, enabling:

● Implementation of far larger networks using the same resource

● Implementation of more copies of networks on the same resource

● Implementation of more sophisticated sparse networks on edge platforms with

limited resources where the corresponding dense networks do not fit

● Massive energy savings and lower costs due to scaling efficiencies

This technology demonstration is the beginning of a robust roadmap based on our deep

neuroscience research. Not only can we achieve speed-ups on the GSC dataset by adding

more sparse networks on chip, we also can apply these sparse techniques to other FPGA and

other hardware platforms and more complex datasets like image recognition and natural

language processing. Further, we can apply sparse networks to training tasks, which could lead

to reduced training time and smaller training sets. Moreover, we plan to implement continual

learning, which offers the promise of substantial benefits over batch training. Beyond sparsity,

as we add more elements of our neocortical model, we expect additional benefits in

unsupervised learning, robustness and sensorimotor behavior.

3

Table of Contents

PERFORMANCE PROBLEMS IN DEEP LEARNING .. 4

NEUROSCIENCE SOLUTIONS ... 5

The Efficient Brain ..5

Sparse Representations ..5

Sparsity in Neural Networks ...6

TECHNOLOGY DESCRIPTION ... 7

Choosing the dataset ...7

Creating the sparse network ..7

Choosing a hardware platform ... 11

Implementing the networks ... 12

Running the performance tests .. 13

DETAILED RESULTS... 14

Throughput .. 14

Power usage .. 16

Resource utilization ... 18

Comparison with GPUs ... 19

Summary of results .. 20

FUTURE WORK .. 20

CONCLUSION ... 21

REFERENCES .. 22

REVISION HISTORY ... 23

APPENDIX .. 23

Reproducibility .. 23

Glossary... 23

Design Flow ... 24

Sparse network implementation details ... 24

4

PERFORMANCE PROBLEMS IN DEEP LEARNING
Over the last decade, deep learning networks have accomplished a great deal but are hitting

bottlenecks as they scale to more complex applications. Researchers attempt to break through

the bottleneck by creating ever larger models, adding more and more compute power, and more

and more training data.1,2 Additionally, these enormous models consume vast amounts of

power, limiting scalability and creating environmental damage.3 We believe that a new

algorithmic approach is required to achieve breakthroughs in performance and scalability.

In contrast to today’s deep learning models the brain is amazingly efficient, and provides a

roadmap as to how to break through these scaling barriers. By studying the brain and

understanding what makes it so efficient, we can create new algorithms based on neuroscience

principles.

At Numenta we have done exactly that for over 15 years. Our focus is the neocortex, which is

the largest brain region, and the area primarily responsible for our intelligence. The foundation

of neocortical efficiency is that the brain stores and processes information as sparse

representations. In our past work we have described some of the benefits of sparsity to areas

such as robustness and continuous learning. In this whitepaper we show that by applying the

principles of sparsity to deep learning, we can lay the groundwork for breakthrough performance

acceleration. By implementing Numenta’s sparse algorithms on Xilinx FPGAs we demonstrate

these principles on inference tasks using the Google Speech Commands (GSC) dataset.

Our results show a speed-up of over 100x1

This technology demonstration is the beginning of a robust roadmap based on our deep

neuroscience research. Not only can we achieve performance improvements on inference, the

principles of sparsity can also lead to dramatically improved training times. Going beyond

sparsity, as we incorporate more elements of our cortical model, we can shrink the size of

training sets and reduce the need for large, manually labeled datasets. Moreover, we can

enable continual learning similar to humans, which will eliminate the need to constantly retrain

the model on the entire training set (batch training). Taken together, these techniques will

eventually provide several orders of magnitude improvements in scaling. We also expect to see

additional benefits in generalization, robustness, and sensorimotor behavior.

1 A previous version of this paper, V1.0, claimed a 50x improvement. V1.0 featured a sparse-dense network, while

V2.0 features a sparse-sparse network, yielding even greater performance improvements.

5

NEUROSCIENCE SOLUTIONS
The Efficient Brain
It is easy to intuit that the human brain solves problems much more efficiently than a deep

learning network. Brains are estimated to require a mere 20 watts of power to perform a wide

range of tasks, from reasoning to language, processing visual and auditory inputs and executing

complex behaviors.4 In contrast, today’s deep learning networks are energy hogs and often

require large amounts of training running on many servers for many days. For example, a recent

study from University of Massachusetts, Amherst, showed that a single large Transformer

model (a natural language processing model) consumed 656,000 kWh at a cost of $1M- $3M

just to train the network.5

How is the brain so intelligent with such amazing efficiency? One reason is that most of the

neocortex is sparse. It stores and processes information in the context of extremely sparse

neural activity and sparse connectivity. Sparsity is foundational to the comprehensive theory of

cortical function we have developed called the Thousand Brains Theory of Intelligence6. It is

beyond the scope of this paper to describe the theory in detail, but it is extensively documented

in peer-reviewed papers7. It’s also described at a higher level in the book A Thousand Brains8.

We discuss applying some additional aspects of the theory in the Future Work section.

Sparse Representations

One of the most remarkable observations about the neocortex is that no matter where you look,

the activity of neurons is sparse; only a small percentage of neurons are sending signals at any

point in time. The activity might vary from less than one percent to several percent, but it is

always extremely sparse. In addition, unlike deep learning networks, the connectivity between

neurons in the brain is also sparse. We have shown through mathematical analysis and

simulation that sparsity enables efficient use of resources, generalization and robustness. For

more details on the nature of sparsity, see Chapter 3 of our digital book Biological and Machine

Intelligence (BAMI)9 and our paper, “How Can We Be So Dense? The Benefits of Using Highly

Sparse Representations.”10

Deep learning has traditionally used dense representations in which the neurons are both highly

interconnected and highly active. As can be readily imagined, working with these dense

implementations is computationally intensive. To compute the output for each and every neuron,

the contribution of each connected neuron much be taken into consideration. This computation

is usually formulated as a matrix multiplication, in which each row vector must be multiplied by

each column vector.

However, we can create sparse versions of these networks by borrowing several aspects of

brain sparsity. Limiting the number of neurons that are active simultaneously is referred to as

activation sparsity, while limiting the interconnectedness of the neurons is referred to as weight

sparsity. In this sparse network, as a result of both the limited connectivity and limited

activations, the matrix multiplications that are required to compute neuron outputs are

performed on matrices for which the majority of matrix values are zero. When these sparse rows

https://numenta.com/neuroscience-research/research-publications/papers/a-framework-for-intelligence-and-cortical-function-based-on-grid-cells-in-the-neocortex/
https://numenta.com/neuroscience-research/research-publications/papers/
http://www.athousandbrains.com/
https://numenta.com/assets/pdf/biological-and-machine-intelligence/BaMI-SDR.pdf
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257

6

and columns are multiplied together, a large fraction of the products can be eliminated. If an

implementation is able to ‘skip’ the computation of the zero products, significant efficiency

benefits can be derived from the network sparsity. Weight sparsity and activation sparsity can

be leveraged independently or concurrently. The benefits of exploiting activation sparsity in

conjunction with sparsified weights is multiplicative, enabling large efficiency improvements. For

example, if both activation sparsity and weight sparsity approach 90%, on average only 1% of

the products will have two non-zero values. The non-zero multiplications required could

therefore be reduced by 100 fold! The challenge is to train networks to have high levels of

sparsity without sacrificing accuracy, and then to pair them with hardware

implementations that can efficiently focus computation on the non-zero products.

Sparsity in Neural Networks

Given the potential of sparse networks, it’s not surprising that the sparsification of neural nets

has become increasingly discussed over the last few years. Today, a variety of open-source

software libraries provide not only tools for sparsifying model weights, but also model runtimes

that begin to leverage this sparsity to deliver improved inference performance. Unfortunately,

fully exploiting these efficiency improvements can be surprisingly difficult with today’s hardware.

Most systems perform best on dense computations, where the predictability of memory access

patterns allows data to be prefetched in a timely manner, and the dense data packing enables a

processor’s vector units to be leveraged to full effect.

Furthermore, there is significant variation in the sophistication of techniques via which sparsity is

introduced into a model. When removing, or ‘pruning’ weights, there are a variety of important

considerations, including timing, whether to remove weights gradually or all at once, whether to

control weight sparsity per layer or globally, and the criteria for selecting which weights to prune.

These choices are extremely consequential and dictate the level of sparsity that can be

achieved before model accuracy degrades irreparably. And, as can be readily appreciated,

small differences in the final sparsity level can have significant impact on the potential for

inference performance improvements. Numenta has developed techniques that allow the

creation of extremely sparse models, while maintaining model accuracy. These techniques

allowed us to remove 95% of the weights in our GSC CNN model, while delivering an accuracy

equivalent to the original dense model. This sparsity level is close to the levels in the brain, and

significantly higher than in machine learning models. It provides significant opportunity for

performance improvements.

While weight sparsity has become more commonplace, attempts to both promote and exploit

sparsity in activations is extremely uncommon. Again, Numenta has developed techniques that

allow for extreme activation sparsity while maintaining model accuracy.

7

In this paper we make two main contributions. Firstly, we illustrate that it is possible to construct

highly sparse networks that deliver equivalent accuracy to their dense counterparts. Secondly,

we highlight that this sparsity can be fully leveraged by today’s hardware, achieving

performance improvements over the dense baseline that are an order-of-magnitude larger than

typically discussed in contemporary literature.

TECHNOLOGY DESCRIPTION
To validate the efficiency of sparse networks, we compared inference performance between

dense and sparse deep learning networks. In order to do so, we went through the following

steps:

1. Choose a dataset for the comparison.

2. Create a sparse neural network for the dataset.

3. Choose a hardware platform to run the comparison tests.

4. Implement both the sparse and dense networks on the chosen hardware platform.

5. Run performance tests on both networks.

6. Compare the results.

Choosing the dataset
We chose the Google Speech Commands (GSC) dataset, which consists of 65,000 one-second

long utterances of keywords spoken by thousands of individuals. The task is to recognize the

word being spoken from the audio signal. This task is representative of modern embedded

smart home applications that respond to speech commands. Competitive results on this dataset

are in the range of 96-97% accuracy.

Creating the sparse network
We created the sparse network with highly sparse weights and activations, like in the neocortex.

Unlike many contemporary approaches to sparse networks we introduce sparsity at the

beginning of the training process, rather than simply pruning weights after initial training is

completed. This approach allows us to create extremely sparse networks that retain their

accuracy. To achieve this result, we made two modifications to the standard deep learning layer

(see also Figure 1):

1. We created sparsity in the weights by initializing the weights using a sparse mask,

that only permits a fraction of the weights to contain non-zero values. This sparse

mask defines the placement of the non-zero weights, and the remainder of the

weights are clamped to zero throughout the life of the network.

2. We created sparse activations by retaining only the top-k active units of each layer;

the rest are set to zero. This k-winner step is non-linear and can be thought of as a

substitute for the ReLU function.

The above formulation is an extension of our previous work on the HTM Spatial Pooler11,

adapted for neural networks trained with back-propagation.

https://numenta.com/neuroscience-research/research-publications/papers/htm-spatial-pooler-neocortical-algorithm-for-online-sparse-distributed-coding/

8

Our dense GSC network is a standard convolutional network with two convolutional layers, a

linear hidden layer plus an output layer, as shown in Table 1. As is standard practice in speech

processing, the raw audio signals are converted to 32-band Mel spectrograms before being fed

to the network. Our sparse GSC network is identical to the dense network except it contains

sparse weights and the k-winner take all function as described above. The accuracies of our

sparse and dense networks are in the range of 96.4% to 96.9%. The sparse network contains

127,696 non-zero weights compared to 2,522,128 weights in the dense network, or about 95%

sparse. The activations in the sparse network range from 88% to 90% sparsity (i.e. 10-12% of

the neurons are ‘winners’), depending on the layer.

Layer Filter/neuron

count

Filter size Filter stride Output Shape

Input - - - 32x32x1

CONV1 64 5x5x1 1 28x28x64

MaxPool1 - 2x2x1 2 14x14x64

CONV2 64 5x5x64 1 10x10x64

MaxPool2 - 2x2x1 2 5x5x64

Flatten - - - 1600x1

Fully Connected 1500 1600x1 - 1500x1

Fully Connected 12 1500x1 - 12x1

Table 1: Architecture of our CNN network trained on the GSC data

Figure 1: Standard dense layer vs our sparse layer. Our sparse layer contains both sparse
weights and sparse activations.

9

The sparsity levels in our networks are much higher than what is commonly seen in the deep

learning literature. In such high sparsity regimes, it is possible for a small subset of the neurons

to dominate and become active for a large percentage of the patterns. In this situation the

network is limited to a small fraction of the possible patterns. To address the issue, we employ a

boosting function during training, which favors units that are inactive.

Details of our sparse network, other implementation issues, and our use of the GSC and other

datasets are discussed in Numenta’s research paper, “How Can We Be So Dense? The

Benefits of Using Highly Sparse Representations.”10

Like any traditional network hyperparameters, the degree of sparsity influences the accuracy of

the model. Accuracy equivalent to the dense counterpart can be achieved even with high levels

of sparsity, and the sparse network will typically also demonstrate improved generality and

improved noise robustness compared to the dense9. See Box 1 for more details on how sparsity

can yield comparable accuracy. Sparsity levels can be increased even further, with a slight

impact to accuracy, effectively trading increased performance for a slight reduction in accuracy.

In this paper, we only consider sparse networks with equivalent accuracy to the original dense

model, but it should be recognized that even greater speedups could be achieved if accuracy

requirements are relaxed.

For our hardware implementation, we apply block sparsity and other structured sparsity spatial

constraints to the weights of our sparse network. For example, to create a block-sparse matrix,

the weight matrix is structured in a way where a large matrix is divided into smaller matrices with

most blocks containing only zero values and a few blocks containing only non-zero values. This

structure aids in compression and efficiently using the on-chip processing logic, and we found

that, correctly architected, this constraint on sparsity could be introduced without negatively

impacting the levels of sparsity achievable or the accuracy of the sparse network. Similarly,

light-weight constraints are applied to the locations of the activations. The weights for both

sparse and dense networks are quantized to 8 bits.

https://arxiv.org/abs/1903.11257
https://arxiv.org/abs/1903.11257

10

Box 1: Sparsity, accuracy, and dimensionality

It may not be intuitive how introducing sparsity can yield comparable accuracy. One would

expect that if you take information away, you will take a hit on accuracy, so how is it possible

to sparsify and retain accuracy? One answer has to do with dimensionality.

Even though most values in a sparse network are zero, you can still convey a lot of

information with enough dimensions. To illustrate how, imagine the following scenario.

Suppose a doctor wants to describe a patient with a series of yes/no questions, where a

“yes” can be thought of as a non-zero. Here’s an example with 10 questions:

1. Is the patient female?

2. Is the patient male?

3. Is the patient above 60?

4. Is the patient between 40 and 60?

5. Is the patient between 30 and 40?

6. Is the patient between 20 and 30?

7. Is the patient younger than 20?

8. Is the patient taller than 6 feet?

9. Is the patient between five and 6 feet?

10. Is the patient shorter than 5 feet?

A typical description will have three yes’s and 7 no’s (three non-zeros). Those answers will

give the doctor limited information about the patient. Now imagine a second description with

many more questions, but you are only allowed two yes’s. You can now create questions

that are more nuanced, such as:

1. Is the patient female and taller than 6 feet?

2. Is the patient female and between five and 6 feet?

3. Is the patient female and shorter than 5 feet?

4. Is the patient male and taller than 6 feet?

5. Is the patient male and between five and 6 feet?

6. Is the patient male and shorter than 5 feet?

7. Is the patient female and above 60?

8. Is the patient female and between 40 and 60?

9. Is the patient female and between 30 and 40?

10. Is the patient female and between 20 and 30?

11. Is the patient female and younger than 20?

12. Etc.

Now the yes’s convey even more information than in the first example. Here you can achieve

the same description with only two yes’s instead of three. If you were allowed hundreds or

thousands of questions, even one yes could provide a lot of information about the patient.

In the example, the number of questions is the dimensionality. In summary, the higher the

dimensionality, the more informative the non-zero’s are, giving you more information about

the entire set. If you’re interested in exploring the topic of sparsity and dimensionality further,

see this research meeting.

https://www.youtube.com/watch?v=3KDsUgUPGM0

11

Choosing a hardware platform
In sparse systems a majority of the computation results are zero (since a majority of the inputs

are also zero). If the machine knows in advance the location of the zeros, it can skip many

useless operations. In addition only the non-zero weights need to be stored, which results in a

much smaller memory footprint. In principle this idea is simple but in practice it is challenging to

find hardware architectures that can exploit both these properties of sparse systems.

We chose an FPGA (Field Programmable Gate Array) as the hardware platform to run the

performance tests because of the flexibility it provides in handling sparse data efficiently.

FPGAs can do as many arbitrary functions in parallel as it has logical elements (thousands to

several million). When processing sparse data, an FPGA can be programmed to ignore zeros

and only compute non-zero values, in addition to computing functions such as k-winner. This

allows the FPGA implementation to efficiently take full advantage of the sparsity. In contrast, it is

currently not possible to parallelize these efficiently in a GPU or CPU. In addition, random

access to memory is far more granular and efficient on an FPGA, enabling FPGA

implementations to efficiently handle the unstructured access patterns in sparse networks. This

ability to program the FPGA in a flexible manner allows it to process sparse data orders of

magnitude faster and much more energy-efficiently than a CPU or GPU.

Overall there are two main reasons why sparse networks are more efficient than dense

networks on an FPGA platform:

● Fewer computations because the logic on chip can skip zeros, enabling computations

with non-zero elements to be performed efficiently

● Smaller memory footprint because only non-zero elements are stored, enabling the chip

to run more networks simultaneously

Note that these two reasons have a multiplicative effect when considering overall system

throughput. For example, if a sparse network is twice as fast as the dense network, and you can

fit three times as many networks on the chip, the sparse system will process six times as many

inputs per second as the dense version. Depending on the achievable sparsity of the network,

these two factors contribute to a net performance improvement that can be several orders of

magnitude higher.

For our technology demonstration, we chose two off-the-shelf Xilinx FPGAs and Platforms: the

Alveo™ U250 and the Zynq™ UltraScale+ ZU3EG. The Alveo U250 is a powerful platform

designed for datacenters, while the Zynq class of FPGAs is much smaller and designed for

embedded applications. Table 2 shows the relative capabilities of the FPGA platforms. As we

show later, our sparse network is able to run efficiently on even the smallest of these platforms

(unlike the dense network).

12

Note that although we feel FPGAs are an ideal platform for this approach, we also believe that

current generation CPUs and GPUs would achieve benefits from sparsity, just not as dramatic.

In the future, we plan to propose exciting architecture enhancements to CPUs and GPUs that

would enable greater use of sparsity for substantial performance gains.

Implementing the networks
We ran the dense and sparse networks on the above Xilinx FPGA platforms. We also used

FPGA design tools for programming, block diagram, functional testing, regression and overall

integration.

We implemented the dense GSC network using the Xilinx software “Vitis AI,” which is a highly

optimized solution for deploying deep learning networks on the Xilinx chips. After specifying the

parameters and weights, the software generates a complete FPGA design and the required

software “drivers” at the OS level.

We implemented the sparse network using a tool called Proximus (see Appendix for details).

The sparse GSC network implementation is made up of sparse convolutional layers, sparse

linear layers, k-winner-take-all modules, plus input/output (host interface) modules.

Two different sparse networks were implemented:

1. A ‘Sparse-Dense’ implementation: in this version the hardware implementation took full

advantage of the sparse weights, but did not take advantage of the sparsity in the

activations (i.e. they were considered dense). This is the simplest form of sparse

network to implement, as the sparsity pattern in the weights is pre-determined for a

specific network and the hardware implementation can be explicitly optimized for this

pattern. In contrast, while only k neurons will be selected as active at each layer, the

location of these winners is input dependent and is constantly changing.

2. A ‘Sparse-Sparse’ implementation : in this version the hardware implementation took full

advantage of the sparsity in both the weights and the activations.

FPGA platform System logic

cells

Internal

Memory

DSP slices System power

Alveo U250 1,728,000 54MB 12,288 225W

Zynq™ UltraScale+ ZU3EG 154,000 0.95MB 360 24W

Table 2: This table lists the relative capabilities of the two Xilinx FPGA platforms.

13

We compare the performance of these two sparse networks against the dense network

baseline, and each other, to highlight the benefits of fully exploiting the sparsity in the model.

Performance details of the Sparse-Dense implementation have been previously discussed by

Numenta12.

Since each sparse network instance is small compared to a dense network instance, multiple

sparse GSC network instances can fit in one FPGA. In the FPGA implementation described

below, using an Alveo U250 board, up to five sparse-sparse GSC networks fit in one “Super

Logic Region” (SLR). There are four SLRs on an Alveo U250, which means there are 20

sparse-sparse network instances on the full Alveo board, compared to four total dense network

instances (one per SLR).

For more information on implementation details, see the Appendix.

Running the performance tests
We ran the performance tests on each of the FPGA platforms, installed in a server. The dense

network and sparse networks tests ran on the same card, sequentially, by downloading the

selected network into the card and then feeding in input data. For the purposes of this test, the

input data is a repeating sequence of 50,000 pre-processed audio samples (audio sample

processing is not part of these tests).

FPGA platform Network type Throughput words/sec Speedup over dense

Alveo U250 Dense 3,049 -

Alveo U250 Sparse-Dense 35,714 11.71

Alveo U250 Sparse-Sparse 102,564 33.63

ZU3EG Dense 0 -

ZU3EG Sparse-Dense 21,053 Infinite

ZU3EG Sparse-Sparse 45,455 Infinite

Table 3: Shows throughput, measured as the number of speech words processed
per second, for a single dense, sparse-dense and sparse-sparse network on two

different platforms. The throughput of the sparse-sparse network on the Alveo U250
is 33.6X times faster than the fastest dense configuration.

14

DETAILED RESULTS
In this section we describe the measured performance of dense vs. sparse networks on the

various platforms. For sparse networks we show a couple of different configurations where we

vary the number of network copies that are placed on the chip. We compare performance using

three different metrics: throughput, power usage, and resource utilization.

Throughput
Our throughput metric measures the total number of inputs processed per second. Tables 3 and

4 show the throughput on each platform for both dense and sparse networks. Table 3 presents

the results for a single network on the chip. As can be seen in the right-hand columns of Table

3, the sparse networks outperform the dense network baselines by a considerable margin. On

the Alveo U250 a single sparse-dense network is more than 10 times faster than a single dense

network, while a single sparse-sparse network is over 30 times faster. These speedups are

clearly highlighted in the left-most set of columns in Figure 2.

Since the large Alveo U250 has sufficient resources to accommodate multiple networks on chip,

Table 4 shows full-chip throughput numbers, where we pack as many copies of each network as

possible onto the FPGA. The U250 can accommodate 4 copies of the dense network, 24 copies

of the sparse-dense network and 20 copies of the sparse-sparse network (The additional logic

required to route the sparse activations to the appropriate sparse weights increases the size of

the sparse-sparse implementation, slightly reducing the full-chip network count in comparison to

the sparse-dense version. However, the performance benefits of leveraging activation sparsity

more than compensate for the decreased network density). With 24 network copies on an Alveo

U250, the sparse-dense networks can process data at 689,000 words/second, more than 56

times faster than the dense implementation on that platform, while the sparse-sparse networks

FPGA platform Network type Number of
networks on

chip

Full chip throughput
(words/sec)

Full chip
speedup

Alveo U250 Dense 4 12,195 -

Alveo U250 Sparse-Dense 24 689,655 56.5

Alveo U250 Sparse-Sparse 20 1,369,863 112.3

ZU3EG Dense 0 0 -

ZU3EG Sparse-Dense 1 21,053 Infinite

ZU3EG Sparse-Sparse 1 45,455 Infinite

Table 4: Shows throughput, measured as the number of speech words processed per

second, for dense, sparse-dense and sparse-sparse networks on two different platforms for
full-chip configurations. The throughput of the 20 network sparse-sparse configuration on

the Alveo U250 is 112.3X times faster than the fastest dense configuration.

15

can process data at 1,369,000 words/second, more than 112 times faster than the dense

implementation. These speedups are clearly illustrated in the right-most set of columns in Figure

2. It is also interesting to note that a single sparse-dense or sparse-sparse network, a small

fraction of what can be accommodated on a U250, nevertheless outperforms the full-chip dense

result by 2.9X and 8.4X respectively!

Figure 2: An illustration of the performance benefits of sparse networks, for both single-

network and a full-chip (U250) configurations

Note that the per network speed drops as we pack more networks on chip. This effect is likely

due to communication bottlenecks, since the amount of data that has to be transferred per

second grows with the number of networks running in parallel, coupled with the slight reductions

in clock speed that can be required for full-chip configurations. Still, the gain in overall

throughput is far more than the drop in each network’s speed.

The small ZU3EG FPGA results shown in Tables 3 and 4 are also extremely interesting. The

dense GSC network cannot fit on that system. The sparse networks are significantly smaller and

thus we can fit a single sparse-dense or sparse-sparse network on that platform (see the

Resource utilization section below). Interestingly, the throughput of that single sparse-sparse

network on the small chip is 3.7X times faster than the total throughput of four dense networks

running on the powerful Alveo U250 (45,455 words/sec vs 12,195 words/sec). This result opens

up new product categories where ultra-small, energy efficient, embedded platforms can run

deep learning based applications without compromise, helping make “AI at the Edge” a reality.

16

Figure 3: An illustration of the performance benefits of sparse-sparse networks,

compared with a sparse-dense baseline, for both single-network and full-chip (U250)
configurations

In addition to comparing the sparse networks to the dense baseline network, we can also

compare the sparse networks to each other. Remember, in the sparse-dense implementation

only sparsity in the weights is exploited for computational efficiency, while in the sparse-sparse

version sparsity in both the weights and the activations is exploited. By exploiting both elements

of sparsity we double the performance of the sparse network (as illustrated in Figure 3), allowing

the sparse-sparse implementation to increase throughput by two orders of magnitude compared

with the dense baseline!

Power usage
Power utilization is rapidly becoming an important criterion in measuring the efficiency of deep

learning systems. We use the metric words/second/watt to evaluate power usage. Table 5

shows the numbers for dense vs. sparse networks on the two platforms.

The relative efficiency column on the right measures the power improvement of each

implementation relative to the dense network baseline on the Alveo U250. As can be seen, the

20 network sparse configuration on the Alveo U250 is over 50X more power efficient than the

dense configuration, while the sparse-sparse configuration is over 100X more power efficient.

Similarly, while the absolute performance delivered by the ZU3EG is lower than the U250, the

power efficiency is significantly higher, providing a compelling AI at the edge solution when

combined with the sparse networks.

17

Note that measuring exact power usage is tricky. In Table 5 we use the max wattage

measurement of the development board as our power consumption. A specific product using a

custom board should get significantly better absolute power usage across the board, perhaps by

as much as a factor of 4. Nevertheless, we expect the general trends and the relative power

efficiency of sparse networks to largely reflect the results shown in Table 5. It is indisputable

that sparse networks are far more efficient than dense networks.

FPGA
platform

System
power

Network type Number of
networks

Words/sec/
watt

Relative
efficiency

Alveo U250 225 Dense 4 54 100%

Alveo U250 225 Sparse-Dense 1 158 292%

Alveo U250 225 Sparse-Dense 24 3065 5675%

Alveo U250 225 Sparse-Sparse 1 455 842%

Alveo U250 225 Sparse-Sparse 20 6088 11274%

ZU3EG 24 Dense 0 0 0

ZU3EG 24 Sparse-Dense 1 877 1624%

ZU3EG 24 Sparse-Sparse 1 1893 3505%

Table 5: Overall power usage, measured in words processed per second per watt, for each

configuration. The relative efficiency column, measured against the dense U250
implementation, shows that the sparse networks are far more efficient than the dense

configuration.

18

Resource utilization
FPGA platforms have a diverse set of compute and memory components, each with different

but overlapping capabilities. Optimizing any implementation often involves balancing between

these various resources. Table 6 shows the percentage utilization of these resources for various

sparse network configurations (we did not have access to the dense network utilization

numbers).

As can be seen from the first and third rows of the table, a single sparse-dense or sparse-

sparse network takes up a tiny percentage of the overall resources on an Alveo U250. This

result means that you can have several networks running in parallel, while still leaving

significant room for the rest of the application. Sparse networks offer much more flexibility than

dense networks in achieving high throughput while still allowing room for other complex

application code.

Finally, while the sparse-sparse implementations do consume more resources than their

sparse-dense counterparts, the significant throughput increases achieved by sparse-sparse

implementation more than offsets the increase in resource utilization.

FPGA
platform

Network type Network
copies

LUT usage BRAM
usage

URAM
usage

DSP

Alveo U250 Sparse-Dense 1 1.64% 1.72% 2.66% 3.56%

Alveo U250 Sparse-Dense 24 38.26% 50.29% 63.75% 85.46%

Alveo U250 Sparse-Sparse 1 2.97% 4.50% 4.06% 3.07%

Alveo U250 Sparse-Sparse 20 63.12% 86.93% 96.56% 61.44%

ZU3EG Sparse-Dense 1 49% 80% NA 94%

ZU3EG Sparse-Sparse 1 79.6% 95.2% NA 88.3%

Table 6: FPGA resource utilization for different sparse configurations.

19

Comparison with GPUs
Our primary goal in this whitepaper is to highlight the performance advantages of sparse

representations vs. dense representations. To do so, we held the platform constant,

implementing both sparse and dense networks on the same FPGA platforms. We did not

implement an optimized sparse network on GPUs. In this section we provide some approximate

performance numbers of the dense network on two GPU systems to get a rough sense of the

relative speeds.

We used PyTorch to run the dense network on two popular NVIDIA platforms: the Tesla™ K80

and the Tesla™ V100. Table 7 shows the throughput of the dense network on these platforms

for various batch sizes (GPU performance is optimized for high batch sizes). Overall, the dense

network has a consistently higher throughput on GPUs than does the dense network on the

Alveo. However, our sparse networks are significantly faster than any of the dense

implementations, FPGA or GPU. Although it is difficult to compare across widely different

architectures, there is no doubt that an FPGA running a sparse network as described here will

have a substantial price performance advantage over a GPU running a dense network.

Note that these numbers should only be used to get a very rough sense of comparative

performance. There are numerous factors that come into play, such as transistor counts, price

points, chip size, and manufacturing density. In addition to the differences between chips, the

software implementations are very different. The PyTorch implementation uses 32 bit floating

point numbers, whereas the Alveo implementation uses 8 bit integer numbers. It is likely that the

GPU throughput of the dense network could be increased with a more optimized

implementation. Nevertheless, the large gap between the sparse and dense network

throughputs shows the clear advantages of our optimized sparse implementations.

Platform Network type Batch size Overall throughput

Alveo U250 Dense 500 12,195

Alveo U250 Sparse-Dense N/A (streaming) 689,655

Alveo U250 Sparse-Sparse N/A (streaming) 1,369,863

Tesla K80 Dense 256 16,024

Tesla K80 Dense 1024 17,710

Tesla K80 Dense 8192 20,118

Tesla V100 Dense 256 45,450

Tesla V100 Dense 1024 61,638

Tesla V100 Dense 8192 54,301

Table 7: Throughput for dense networks on two GPU platforms for different batch

sizes. Our sparse networks significantly outperform all dense implementations.

20

Recently NVIDIA has started to invest more heavily in sparsity, particularly in their Ampere

architecture13. Our networks are much sparser than the ones they showed and our networks

incorporate both activation sparsity as well as weight sparsity. Given the promise of such highly

sparse networks, it is possible that additional improvements to the underlying GPU architecture

could eventually lead to much larger benefits.

Summary of results
As can be seen throughout the above discussion, sparse networks offer significant performance

benefits over dense networks. An individual sparse network is faster than a comparable dense

network. Since sparse networks are much smaller than dense networks, more copies can be

implemented on the same chip, improving throughput even further. Sparse networks are far

more energy efficient, and our optimized sparse implementation is significantly faster than

dense networks running on more powerful chips (both FPGA and GPU).

FUTURE WORK
This technology demonstration validates that sparsity will be a key factor in scaling deep

learning networks. We are working with strategic partners to commercialize this technology.

Future work will proceed in a couple of directions. First, these impressive performance results

are not specific to the GSC dataset or the particular CNN network presented in Table 1. Rather,

Numenta has developed a generalized approach for creating highly sparse networks for which

the potential efficiency gains associated with the network can be realized on current hardware

architectures, such as FPGAs, We are in the process of applying these techniques to more

complex networks (such as ResNet and Transformer networks), more challenging datasets, and

on additional hardware platforms, with the goal of clearly demonstrating the broad applicability

of these techniques to deep neural architectures. Second, this whitepaper has focused on

inference tasks, but the same principles apply to training. We plan to create a technology

demonstration to validate that sparsity can significantly improve the efficiency of training deep

learning networks.

Sparsity is foundational to the Thousand Brains Theory, but it is only the beginning. Deep

learning models have had significant challenges beyond performance that can be addressed by

implementing more of the neocortical theory. To begin with, a major challenge faced by these

networks is an inability to learn continuously. As new data arrives, a large model needs to be

retrained in batch mode in order to update it, using huge additional resources. Our brains adapt

continuously with each new data point. Moreover, today’s machine learning models require

supervised learning with labeled data while your brain is able to rapidly classify similar objects

without labeling. The Thousand Brains Theory neuron model describes how a brain is

continuously updated and how it learns without supervision. In the future we can apply these

techniques to machine learning in order to enable continuous learning and unsupervised

learning.

21

Another major challenge is that deep learning models are notoriously brittle14. Small changes to

the input or missing information can completely throw off inference. The Thousand Brains

Theory describes how our brains constantly make predictions, and constantly improves by

learning from mistakes in these predictions. The ability to make accurate structured predictions

explains why our brains are so robust. It explains how we are able to effortlessly fill in missing

pieces of a scene, such as the lower half of a person blocked by a car door. The same principle

can be applied to improve the robustness of deep learning models.

Finally, deep learning models have yet to be successfully applied to sensorimotor behavior in

advanced robotics. If we want to create more powerful machine intelligence, we need to be able

to make decisions and implement actions. The Thousand Brains Theory, which Jeff Hawkins

writes about in his recent book, A Thousand Brains8, explains how reference frames provide a

framework to extend the success of machine intelligence in static tasks to sensorimotor tasks in

robotics.

CONCLUSION
Since the beginning of the field of AI over fifty years ago, scientists have speculated that the

brain, as the only demonstration of intelligence in the universe, can show the path towards

implementing machine intelligence. Yet, over these many years, and in spite of spectacular

growth in the field of neuroscience, little has been made of this possibility. Instead, the field of AI

has focused on inefficient techniques enabled by vast amounts of compute power and data,

quite different from the neocortex. As these techniques reach their inevitable limitations, turning

to the brain for insights has become not just an alternative, but a necessity, to advance the field.

Today, with a far more complete understanding of the human brain, we now see a clear

roadmap on how to apply these concepts to building efficient, intelligent machines. We propose

a starting point of using sparsity to dramatically improve the performance of deep learning

networks. As we continue to implement more and more of the Thousand Brains Theory in

algorithms, we are confident that we are finally on the path to machine intelligence.

22

REFERENCES

1. Thompson, N., Greenewald K., Lee, K., Manso, G. (2020). The Computational Limits of

Deep Learning. MIT Computer Science and A.I. Lab.

https://arxiv.org/pdf/2007.05558.pdf

2. "AI and Compute: Addendum." Open AI.com Blog. November 7, 2019.

https://openai.com/blog/ai-and-compute/#addendum

3. Hao, K. (2019). “Training a single AI model can emit as much carbon as five cars in their

lifetimes” MIT Technology Review, June 6, 2019.

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-

emit-as-much-carbon-as-five-cars-in-their-lifetimes/

4. Elert, G. (2001). Power of the Human Brain. Available at

https://hypertextbook.com/facts/2001/JacquelineLing.shtml

5. Strubell, E., Ganesh, A., McCallum, A. (2019). Energy and Policy Considerations for

Deep Learning in NLP. 57th Annual Meeting of the Association for Computational

Linguistics (ACL). Florence, Italy. July 2019. https://arxiv.org/abs/1906.02243

6. Hawkins, J., Lewis, M., Purdy, S., Klukas, M., Ahmad, S. (2019). A Framework for

Intelligence and Cortical Function Based on Grid Cells in the Neocortex. Frontiers in

Neural Circuits 12, 121. https://doi.org/10.3389/fncir.2018.00121

7. Hawkins, et al. Numenta research papers. https://numenta.com/papers

8. Hawkins, J. A Thousand Brains: A New Theory of Intelligence, Basic Books, March

2021.

9. Hawkins, J. et al. 2016-2020. Biological and Machine Intelligence. Release 0.4.

Accessed at https://numenta.com/resources/biological-and-machine-intelligence/

10. Ahmad, S., Scheinkman, L. (2019). How Can We Be So Dense? The Benefits of Using

Highly Sparse Representations. https://arxiv.org/abs/1903.11257

11. Cui, Y., Ahmad, S., Hawkins, J. (2017). The HTM Spatial Pooler—A Neocortical

Algorithm for Online Sparse Distributed Coding. Frontiers in Neuroscience, 11.

https://doi.org/10.3389/fncom.2017.00111

12. “Numenta Demonstrates 50X Speed Improvements On Deep Learning Networks Using

Brain-Derived Algorithms”, Numenta.com Blog. November 9, 2020.

https://numenta.com/press/2020/11/10/Numenta-Demonstrates-50x-Performance-

Acceleration-Deep-Learning-Networks

13. “How Sparsity Adds Umph to AI Inference.” NVIDIA.com Blog. May 14, 2020.

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

14. Su, J., Vargas, D., Kouichi, S. (2019). One pixel attack for fooling deep neural networks.

IEEE Transactions on Evolutionary Computation, Vol.23 , Issue.5 , pp. 828--841.

https://arxiv.org/abs/1710.08864

Note: Xilinx, Google, Alveo, Zynq, Vitis PyTorch, NVIDIA, Tesla, and Ampere are registered trademarks
of their respective owners.

https://arxiv.org/pdf/2007.05558.pdf
https://openai.com/blog/ai-and-compute/#addendum
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://hypertextbook.com/facts/2001/JacquelineLing.shtml
https://arxiv.org/abs/1906.02243
https://doi.org/10.3389/fncir.2018.00121
https://numenta.com/papers
https://numenta.com/resources/biological-and-machine-intelligence/
https://arxiv.org/abs/1903.11257
https://doi.org/10.3389/fncom.2017.00111
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/
https://arxiv.org/abs/1710.08864

23

REVISION HISTORY
The table notes changes between versions. Minor changes such as small clarifications or
formatting changes are not noted.

Version Date Changes

1.0 Oct 30, 2020 Initial release

2.0 May 20, 2021

Initial release showed 50x performance improvements using

sparse-dense implementation. V2.0 shows 100x

performance using sparse-sparse implementation

APPENDIX
Reproducibility
The performance tests can be reproduced by a third party on their own Alveo U250 board.
Contact sparse@numenta.com if you’re interested in learning more.

Glossary
• High Level Synthesis (HLS): an automatic generation of electronic circuitry from a high-level

algorithmic description (for example in C++).

• Register Transfer Level (RTL): a design abstraction which models a synchronous digital circuit

in terms of the transfer of data between hardware registers (memory or flip-flops), and the logical

operations performed on that data.

• Super Logical Region (SLR): Most of Xilinx FPGA devices in the “Alveo” line consist of multi-

chip-modules comprised of several physical chips. Each of the chips are referred to as an

SLR. It is an important aspect in the design of a system because there is a slight timing

impact in the transition between the SLRs and the number of connections is limited.

• Proximus: A proprietary FPGA integrated development environment that allows the design

of systems at the block level by expressing the overall function as communicating parallel

processes.

• Vitis: Part of the Xilinx FPGA design tool offering, this is the high-level platform which deals

with software components, hardware drivers, high level design entry and HLS. Vitis

translates high level designs (C++) into RTL.

• Vitis AI: Xilinx library-based AI offering for FPGA design which allows the designer to

parameterize a wide range of different AI networks and map them to a subset of available

chips and cards.

mailto:sparse@numenta.com

24

• Vivado: Xilinx physical design integrated development environment (IDE) in the Vitis

platform, used to do the mapping of an electronic design to the FPGA chip, using RTL-

synthesis.

Design Flow
1. Using Proximus, a block diagram is developed which consists of communicating

functional parts, in this case the different layers of a neural network (CNN1, CNN2 etc.).

Each block can contain a purely functional description (for example in C++) or contain

more levels of blocks which eventually contain simpler functional descriptions (for

example a multiplication). Functionality is verified at this level and given some

assumptions (e.g. # of cycles for operations), performance can be estimated and trade-

offs can be made at this point in the design.

2. The design is then exported into the Xilinx tool set, where Vitis generates the hardware

drivers and does High Level Synthesis. Circuit simulation can be done at the HLS stage.

3. Assuming there are no timing problems found, Vivado then does RTL and physical

synthesis, place and route, timing verification and bitsteam generation. Circuit simulation

can be done at the RTL level during this stage.

4. The design is then transferred to the physical FPGA. Proximus then connects to the

FPGA hardware and performs the overall system execution.

Sparse network implementation details
The next several figures walk through the sparse network implementation details.

Figure A. Single sparse-sparse GSC network in one SLR, shown in Proximus. The right side of
the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. SLR0 is
highlighted, and the left side of the figure shows the block diagram of a single copy of the GSC
sparse-sparse network instance which is implemented in this SLR.

25

Figure B. Multiple sparse-sparse GSC networks in one SLR, shown in Proximus. The right side
of the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left
side of the figure shows five instances of the sparse-sparse GSC network which are
implemented in one SLR. The inputs are distributed into these five networks in round robin
fashion using a map reduce algorithm. Each box in the left side of the diagram contains C++
code implementing the function of the network layer.

26

Figure C. Multiple sparse-sparse GSC networks in one SLR, shown in Vivado, after the design
is exported from Proximus into Vitis, and high-level synthesis has run. Figure C is equivalent to
Figure B, but shown in a different tool view. The dataflow is shown top-down in Proximus
(Figure B) and left-right in Vivado (Figure C). Each box in Figure C contains synthesized RTL
(Register Transfer Level).

27

Figure D. Multiple GSC networks distributed across 4 SLRs, shown in Proximus. The right side
of the figure is a high-level block diagram of the Alveo U250, showing all four SLRs. The left
side of the figure shows the full chip design, with each “gsc_hw” block equivalent to the block
diagram shown in Figure B, representing one SLR for a total of four SLRs. Each “gsc_hw” block
contains 5 copies of the sparse-sparse GSC network, with a total of 20 networks implemented
on the chip.

28

Figure E: The same, full design of 5 networks in each of 4 SLRs on Alveo U250, in flattened
(hierarchy removed) view, shown in Proximus.

29

Figure F. This is the entire design (20 network copies distributed over 4 SLRs) shown in Vivado.
The block level diagram shows the 5x4 logical designs with their two-level distribution and map-
reduce logic. In addition, to reduce the dependency on slight timing-differences between
modules, each one has a FIFO module on its input as well as output.

30

Figure G. Pictured here is the physical
layout of 5 sparse-sparse instances per
SLR, 20 in total, on the Alveo U250.

The parts in the design are built
automatically by Vitis-HLS, which
translates C++ from Proximus into RTL.
Then Vivado synthesizes RTL into FPGA
gate level and places and routes the
design on the FPGA.

In this Vivado physical view (which is the
result of the “place and route” process)
the 4 SLRs can be seen clearly stacked
vertically. You can also see the “static
region” which is the space reserved for
the host interface (PCI-e 3.0x16) as well
as the DDR4 interfaces to the 4 parallel
memory DIMM available on the board.
The logic is smeared as a large number
of tiny pieces (LUT, DSP, BRAM, URAM
and routing) and depicted in light blue.

	PERFORMANCE PROBLEMS IN DEEP LEARNING
	NEUROSCIENCE SOLUTIONS
	The Efficient Brain
	Sparse Representations
	Sparsity in Neural Networks

	TECHNOLOGY DESCRIPTION
	Choosing the dataset
	Creating the sparse network
	Choosing a hardware platform
	Implementing the networks
	Running the performance tests

	DETAILED RESULTS
	Throughput
	Power usage
	Resource utilization
	Comparison with GPUs
	Summary of results

	FUTURE WORK
	CONCLUSION
	REFERENCES
	REVISION HISTORY
	APPENDIX
	Reproducibility
	Glossary
	Design Flow
	Sparse network implementation details

