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Biological and Machine Intelligence: Introduction 
The 21st century is a watershed in human evolution. We are solving the mystery of how the brain works and starting to build 
machines that work on the same principles as the brain. We are in the era of machine intelligence, which enables an explosion of 
beneficial applications and scientific advances.   

Most people intuitively see the value in understanding how the human brain works.  It is easy to see how brain theory could lead 
to the cure and prevention of mental disease or how it could lead to better methods for educating our children.  These practical 
benefits justify the substantial efforts underway to reverse engineer the brain. However, the benefits go beyond the near-term and 
the practical. The human brain defines our species.  In most aspects we are an unremarkable species, but our brain is unique. The 
large size of our brain, and its unique design, is the reason humans are the most successful species on our planet. Indeed, the human 
brain is the only thing we know of in the universe that can create and share knowledge. Our brains are capable of discovering the 
past, foreseeing the future, and unravelling the mysteries of the present. Therefore, if we want to understand who we are, if we 
want to expand our knowledge of the universe, and if we want to explore new frontiers, we need to have a clear understanding of 
how we know, how we learn, and how to build intelligent machines to help us acquire more knowledge.  The ultimate promise of 
brain theory and machine intelligence is the acquisition and dissemination of new knowledge.  Along the way there will be 
innumerous benefits to society.  The beneficial impact of machine intelligence in our daily lives will equal and ultimately exceed 
that of programmable computers. 

But exactly how will intelligent machines work and what will they do?  If you suggest to a lay person that the way to build intelligent 
machines is to first understand how the human brain works and then build machines that work on the same principles as the brain, 
they will typically say, “That makes sense”.  However, if you suggest this same path to artificial intelligence ("AI") and machine 
learning scientists, many will disagree.  The most common rejoinder you hear is “airplanes don’t flap their wings”, suggesting that 
it doesn’t matter how brains work, or worse, that studying the brain will lead you down the wrong path, like building a plane that 
flaps its wings. 

This analogy is both misleading and a misunderstanding of history.  The Wright brothers and other successful pioneers of aviation 
understood the difference between the principles of flight and the need for propulsion.  Bird wings and airplane wings work on the 
same aerodynamic principles, and those principles had to be understood before the Wright brothers could build an airplane.  Indeed, 
they studied how birds glided and tested wing shapes in wind tunnels to learn the principles of lift.  Wing flapping is different; it is 
a means of propulsion, and the specific method used for propulsion is less important when it comes to building flying machines. In 
an analogous fashion, we need to understand the principles of intelligence before we can build intelligent machines.  Given that the 
only examples we have of intelligent systems are brains, and the principles of intelligence are not obvious, we must study brains to 
learn from them.  However, like airplanes and birds, we don’t need to do everything the brain does, nor do we need to implement 
the principles of intelligence in the same way as the brain.  We have a vast array of resources in software and silicon to create 
intelligent machines in novel and exciting ways. The goal of building intelligent machines is not to replicate human behavior, nor 
to build a brain, nor to create machines to do what humans do. The goal of building intelligent machines is to create machines that 
work on the same principles as the brain—machines that are able to learn, discover, and adapt in ways that computers can’t and 
brains can. 

Consequently, the machine intelligence principles we describe in this book are derived from studying the brain.  We use 
neuroscience terms to describe most of the principles, and we describe how these principles are implemented in the brain.  The 
principles of intelligence can be understood by themselves, without referencing the brain, but for the foreseeable future it is easiest 



to understand these principles in the context of the brain because the brain continues to offer suggestions and constraints on the 
solutions to many open issues.  

This approach to machine intelligence is different than that taken by classic AI and artificial neural networks.  Despite the fact that 
many AI pioneers are embracing brain-based approaches, most AI technologists’ attempts to build intelligent machines involve 
encoding rules and knowledge in software and human-designed data structures.  This AI approach has had many successes solving 
specific problems but has not offered a generalized approach to machine intelligence and, for the most part, has not addressed the 
question of how machines can learn. Artificial neural networks (ANNs) are learning systems built using networks of simple 
processing elements.  In recent years ANNs, often called “deep learning networks”, have succeeded in solving many classification 
problems. However, despite the word “neural”, most ANNs are based on neuron models and network architectures that are 
incompatible with real biological tissue. More importantly, ANNs, by deviating from known brain principles, don't provide an 
obvious path to building truly intelligent machines. 

Classic AI and ANNs generally are designed to solve specific types of problems rather than proposing a general theory of 
intelligence.  In contrast, we know that brains use common principles for vision, hearing, touch, language, and behavior.  This 
remarkable fact was first proposed in 1979 by Vernon Mountcastle.  He said there is nothing visual about visual cortex and nothing 
auditory about auditory cortex.  Every region of the neocortex performs the same basic operations.  What makes the visual cortex 
visual is that it receives input from the eyes; what makes the auditory cortex auditory is that it receives input from the ears.  From 
decades of neuroscience research, we now know this remarkable conjecture is true. Some of the consequences of this discovery are 
surprising. For example, neuroanatomy tells us that every region of the neocortex has both sensory and motor functions. Therefore, 
vision, hearing, and touch are integrated sensory-motor senses; we can’t build systems that see and hear like humans do without 
incorporating movement of the eyes, body, and limbs. 

The discovery that the neocortex uses common algorithms for everything it does is both elegant and fortuitous.  It tells us that to 
understand how the neocortex works, we must seek solutions that are universal in that they apply to every sensory modality and 
capability of the neocortex.  To think of vision as a “vision problem” is misleading.  Instead we should think about vision as a 
“sensory motor problem” and ask how vision is the same as hearing, touch or language.  Once we understand the common cortical 
principles, we can apply them to any sensory and behavioral systems, even those that have no biological counterpart.  The theory 
and methods described in this book were derived with this idea in mind.  Whether we build a system that sees using light or a 
system that “sees” using radar or a system that directly senses GPS coordinates, the underlying learning methods and algorithms 
will be the same. 

Today, having made several important discoveries about how the neocortex works, we can build practical systems that solve 
valuable problems. Of course, there are still some things we don’t understand about the brain and the neocortex, but we have an 
overall theory that can be tested. The theory includes key principles such as: how neurons make predictions, the role of dendritic 
spikes in cortical processing, how cortical layers learn sequences, and how cortical columns learn to model objects through 
movement. This book reflects those key principles. 

 

The Thousand Brains Theory of Intelligence and Hierarchical Temporal Memory 
When we wrote BaMI in 2016, we used the term HTM to mean two things: it was the name we used to describe the overall theory 
of how the neocortex functions. It was also the name we used to describe algorithmic components of the theory. In late 2018 we 
started referring to the theoretical framework for biological and machine intelligence as The Thousand Brains Theory of 
Intelligence. Hierarchical Temporal Memory, or HTM, now describes only the algorithmic components of that theory and related 
technical resources we’ve produced. 

The Thousand Brains Theory of Intelligence is based on a discovery outlined in a 2019 peer-reviewed paper1 that described how 
the brain does not learn only one model of an object or concept. Instead it builds many models, using different inputs from different 
sensors, and the models vote together to reach a consensus on what they’re sensing.  The consensus vote is what we perceive.  It’s 
as if your brain is actually thousands of brains working simultaneously.  

Although the Thousand Brains Theory is a biologically constrained theory, and is perhaps the most biologically realistic theory of 
how the neocortex works, it does not attempt to include all biological details. Therefore the HTM algorithms do not include all 
biological details. For example, the biological neocortex exhibits several types of rhythmic behavior in the firing of ensembles of 
neurons. There is no doubt that these rhythms are essential for biological brains. But HTM algorithms do not include these rhythms 
because we don’t believe they play an information-theoretic role. Our best guess is that these rhythms are needed in biological 
brains to synchronize action potentials, but we don’t have this issue in software and hardware implementations of HTM.  If in the 
future we find that rhythms are essential for intelligence, and not just biological brains, then we would modify HTM algorithms to 

 
1 A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex 



include them. There are many biological details that similarly are not part of HTM.  Every feature included in HTM is there because 
we have an information-theoretical need that is met by that feature. 

The Thousand Brains Theory is not a theory of an entire brain; it only covers the neocortex and its interactions with some closely 
related structures such as the thalamus and hippocampus.  The neocortex is where most of what we think of as intelligence resides 
but it is not in charge of emotions, homeostasis, and basic behaviors.  Other, evolutionarily older, parts of the brain perform these 
functions.  These older parts of the brain have been under evolutionary pressure for much longer time, and although they consist 
of neurons, they are heterogeneous in architecture and function. We are not interested in emulating entire brains or in making 
machines that are human-like, with human-like emotions and desires. Therefore intelligent machines, as we define them, are not 
likely to pass the Turing test or be like the humanoid robots seen in science fiction.  This distinction does not suggest that intelligent 
machines will be of limited utility.  Many will be simple, tirelessly sifting through vast amounts of data looking for unusual patterns.  
Others will be fantastically fast and smart, able to explore domains that humans are not well suited for.  The variety we will see in 
intelligent machines will be similar to the variety we see in programmable computers.  Some computers are tiny and embedded in 
cars and appliances, and others occupy entire buildings or are distributed across continents.  Intelligent machines will have a similar 
diversity of size, speed, and applications, but instead of being programmed they will learn. 

The Thousand Brains Theory cannot be expressed succinctly in one or a few mathematical equations.  HTM principles work 
together to produce perception and behavior.  In this regard, HTMs are like computers. Computers can’t be described purely 
mathematically.  We can understand how they work, we can simulate them, and subsets of computer science can be described in 
formal mathematics, but ultimately we have to build them and test them empirically to characterize their performance.  Similarly, 
some parts of HTM can be analyzed mathematically. For example, the chapter in this book on sparse distributed representations is 
mostly about the mathematical properties of sparse representations. But other parts of the theory are less amenable to formalism. 
If you are looking for a succinct mathematical expression of intelligence, you won’t find it. In this way, brain theory is more like 
genetic theory and less like physics. 

What is Intelligence? 

Historically, intelligence has been defined in behavioral terms.  For example, if a system can play chess, or drive a car, or answer 
questions from a human, then it is exhibiting intelligence.  The Turing Test is the most famous example of this line of thinking.  We 
believe this approach to defining intelligence fails on two accounts.  First, there are many examples of intelligence in the biological 
world that differ from human intelligence and would fail most behavioral tests.  For example, dolphins, monkeys, and humans are 
all intelligent, yet only one of these species can play chess or drive a car.  Similarly, intelligent machines will span a range of 
capabilities from mouse-like to super-human and, more importantly, we will apply intelligent machines to problems that have no 
counterpart in the biological world.  Focusing on human-like performance is limiting.  

The second reason we reject behavior-based definitions of intelligence is that they don’t capture the incredible flexibility of the 
neocortex.  The neocortex uses the same algorithms for all that it does, giving it flexibility that has enabled humans to be so 
successful.  Humans can learn to perform a vast number of tasks that have no evolutionary precedent because our brains use learning 
algorithms that can be applied to almost any task. The way the neocortex sees is the same as the way it hears or feels.  In humans, 
this universal method creates language, science, engineering, and art.  When we define intelligence as solving specific tasks, such 
as playing chess, we tend to create solutions that also are specific. The program that can win a chess game cannot learn to drive.  It 
is the flexibility of biological intelligence that we need to understand and embed in our intelligent machines, not the ability to solve 
a particular task. Another benefit of focusing on flexibility is network effects.  The neocortex may not always be best at solving 
any particular problem, but it is very good at solving a huge array of problems.  Software engineers, hardware engineers, and 
application engineers naturally gravitate towards the most universal solutions.  As more investment is focused on universal 
solutions, they will advance faster and get better relative to other more dedicated methods.  Network effects have fostered adoption 
many times in the technology world; this dynamic will unfold in the field of machine intelligence, too. 

Therefore we define the intelligence of a system by the degree to which it exhibits flexibility: flexibility in learning and flexibility 
in behavior.  Since the neocortex is the most flexible learning system we know of, we measure the intelligence of a system by how 
many of the neocortical principles that system includes.  This book is an attempt to enumerate and understand these neocortical 
principles.  Any system that includes all the principles we cover in this book will exhibit cortical-like flexibility, and therefore 
cortical-like intelligence.  By making systems larger or smaller and by applying them to different sensors and embodiments, we 
can create intelligent machines of incredible variety.  Many of these systems will be much smaller than a human neocortex and 
some will be much larger in terms of memory size, but they will all be intelligent. 

About this Book 

The structure of this book may be different from those you have read in the past.  Some of the chapters cover key principles of the 
Thousand Brains Theory in great detail.  Later chapters instead point to published papers and additional resources. Our hope is that 



we have covered aspects of the theory that are best understood.  Some chapters may be published in draft form, whereas others will 
be more polished.     

Second, the book is intended for a technical but diverse audience.  Neuroscientists should find the book helpful as it provides a 
theoretical framework to interpret many biological details and guide experiments. Computer scientists can use the material in the 
book to develop machine intelligence hardware, software, and applications based on neuroscience principles. Anyone with a deep 
interest in how brains work or machine intelligence will hopefully find the book to be the best source for these topics.  Finally, we 
hope that academics and students will find this material to be a comprehensive introduction to an emerging and important field that 
offers opportunities for future research and study. 

The structure of the chapters in this book varies depending on the topic.  Some chapters are overview in nature.  Some chapters 
include mathematical formulations and problem sets to exercise the reader’s knowledge.  Some chapters include pseudo-code.  Key 
citations will be noted, but we do not attempt to have a comprehensive set of citations to all work done in the field.  As such, we 
gratefully acknowledge the many pioneers whose work we have built upon who are not explicitly mentioned. 

We are now ready to jump into the details of biological and machine intelligence. 

  


