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Thousand Brains Theory of Intelligence

Hierarchical Temporal Memory: Overview

The Thousand Brains Theory of Intelligence is a biological theory, meaning it is derived from neuroanatomy and neurophysiology
and explains how the biological neocortex works. HTM principles are the technical details and algorithms that comprise the theory.
Much of this book focuses on those HTM principles. We sometimes say HTM is “biologically constrained,” as opposed to
“biologically inspired,” which is a term often used in machine learning. The biological details of the neocortex must be compatible
with the theory, and the theory can’t rely on principles that can’t possibly be implemented in biological tissue. For example, consider
the pyramidal neuron, the most common type of neuron in the neocortex. Pyramidal neurons have tree-like extensions called
dendrites that connect via thousands of synapses. Neuroscientists know that the dendrites are active processing units, and that
communication through the synapses is a dynamic, inherently stochastic process (Poirazi and Mel, 2001). The pyramidal neuron is
the core information processing element of the neocortex, and synapses are the substrate of memory. Therefore, to understand how
the neocortex works we need a theory that accommodates the essential features of neurons and synapses. Artificial Neural Networks
(ANNSs) usually model neurons with no dendrites and few highly precise synapses, features which are incompatible with real
neurons. This type of artificial neuron can’t be reconciled with biological neurons and is therefore unlikely to lead to networks that
work on the same principles as the brain. This observation doesn’t mean ANNs aren’t useful, only that they don’t work on the
same principles as biological neural networks. As you will see, our theory explains why neurons have thousands of synapses and
active dendrites. We believe these and many other biological features are essential for an intelligent system and can’t be ignored.
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Figure I Biological and artificial neurons. Figure la shows an artificial neuron typically used in machine learning and artificial neural networks.
Often called a “point neuron” this form of artificial neuron has relatively few synapses and no dendrites. Learning in a point neuron occurs by
changing the “weight” of the synapses which are represented by a scalar value that can take a positive or negative value. A point neuron calculates
a weighted sum of its inputs which is applied to a non-linear function to determine the output value of the neuron. Figure 1b shows a pyramidal
neuron which is the most common type of neuron in the neocortex. Biological neurons have thousands of synapses arranged along dendrites.
Dendrites are active processing elements allowing the neuron to recognize hundreds of unique patterns. Biological synapses are partly stochastic
and therefore are low precision. Learning in a biological neuron is mostly due to the formation of new synapses and the removal of unused synapses.
Pyramidal neurons have multiple synaptic integration zones that receive input from different sources and have differing effects on the cell. Figure
1c shows an HTM artificial neuron. Similar to a pyramidal neuron it has thousands of synapses arranged on active dendrites. It recognizes hundreds
of patterns in multiple integration zones. The HTM neuron uses binary synapses and learns by modeling the growth of new synapses and the decay
of unused synapses. HTM neurons don’t attempt to model all aspects of biological neurons, only those that are essential for information theoretic
aspects of the neocortex.

Although we want to understand how biological brains work, we don’t have to adhere to all the biological details. Once we
understand how real neurons work and how biological networks of neurons lead to memory and behavior, we might decide to
implement them in software or in hardware in a way that differs from the biology in detail, but not in principle. But we shouldn’t
do that before we understand how biological neural systems work. People often ask, “How do you know which biological details
matter and which don’t?” The answer is: once you know how the biology works, you can decide which biological details to include
in your models and which to leave out, but you will know what you are giving up, if anything, if your software model leaves out a
particular biological feature. Human brains are just one implementation of intelligence; yet today, humans are the only things
everyone agrees are intelligent. Our challenge is to separate aspects of brains and neurons that are essential for intelligence from
those aspects that are artifacts of the brain’s particular implementation of intelligence principles. Our goal isn’t to recreate a brain,
but to understand how brains work in sufficient detail so that we can test the theory biologically and also build systems that,
although not identical to brains, work on the same principles.

Sometime in the future designers of intelligent machines may not care about brains and the details of how brains implement the
principles of intelligence. The field of machine intelligence may by then be so advanced that it has departed from its biological
origin. But we aren’t there yet. Today we still have much to learn from biological brains and therefore to understand HTM principles
and to build intelligent machines, it is necessary to know neuroscience terms and the basics of the brain’s design.

The remainder of this chapter introduces some of the key concepts of HTM. We will describe an aspect of the neocortex and then
relate that biological feature to one or more principles of HTM. In-depth descriptions and technical details of the HTM principles
are provided in subsequent chapters.

You’ll find information on the representation format used by the neocortex (“sparse distributed representations” or SDRs), the
mathematical and semantic operations that are enabled by this representation format, and how neurons throughout the neocortex
learn sequences and make predictions, which is the core component of all inference and behavior. We also understand how
knowledge is stored by the formation of sets of new synapses on the dendrites of neurons. These are basic elements of biological
intelligence analogous to how random access memory, busses, and instruction sets are basic elements of computers. Once you
understand these basic elements, you can combine them in different ways to create full systems.



The human brain comprises several components such as the brain stem, the basal ganglia, and the cerebellum. These organs are
loosely stacked on top of the spinal cord. The neocortex is just one more component of the brain, but it dominates the human brain,
occupying about 75% of its volume. The evolutionary history of the brain is reflected in its overall design. Simple animals, such
as worms, have the equivalent of the spinal cord and nothing else. The spinal cord of a worm and a human receives sensory input
and generates useful, albeit simple, behaviors. Over evolutionary time scales, new brain structures were added such as the brainstem
and basal ganglia. Each addition did not replace what was there before. Typically the new brain structure received input from the
older parts of the brain, and the new structure’s output led to new behaviors by controlling the older brain regions. The addition of
each new brain structure had to incrementally improve the animal’s behaviors. Because of this evolutionary path, the entire brain
is physically and logically a hierarchy of brain regions.

Figure 2 a) real brain b) logical hierarchy (placeholder)

The neocortex is the most recent addition to our brain. All mammals, and only mammals, have a neocortex. The neocortex first
appeared about 200 million years ago in the early small mammals that emerged from their reptilian ancestors during the transition
of the Triassic/Jurassic periods. The modern human neocortex separated from those of monkeys in terms of size and complexity
about 25 million years ago (Rakic, 2009). The human neocortex continued to evolve to be bigger and bigger, reaching its current
size in humans between 800,000 and 200,000 years ago®. In humans, the neocortex is a sheet of neural tissue about the size of a
large dinner napkin (2,500 square centimeters) in area and 2.5mm thick. It lies just under the skull and wraps around the other parts
of the brain. (From here on, the word “neocortex” will refer to the human neocortex. References to the neocortex of other mammals
will be explicit.) The neocortex is heavily folded to fit in the skull but this isn’t important to how it works, so we will always refer
to it and illustrate it as a flat sheet. The human neocortex is large both in absolute terms and also relative to the size of our body
compared to other mammals. We are an intelligent species mostly because of the size of our neocortex.

The most remarkable aspect of the neocortex is its homogeneity. The types of cells and their patterns of connectivity are nearly
identical no matter what part of the neocortex you look at. This fact is largely true across species as well. Sections of human, rat,
and monkey neocortex look remarkably the same. The primary difference between the neocortex of different animals is the size of
the neocortical sheet. Many pieces of evidence suggest that the human neocortex got large by replicating a basic element over and
over. This observation led to the 1978 conjecture by Vernon Mountcastle that every part of the neocortex must be doing the same
thing. So even though some parts of the neocortex process vision, some process hearing, and other parts create language, at a
fundamental level these are all variations of the same problem, and are solved by the same neural algorithms. Mountcastle argued
that the vision regions of the neocortex are vision regions because they receive input from the eyes and not because they have
special vision neurons or vision algorithms (Mountcastle, 1978). This discovery is incredibly important and is supported by multiple
lines of evidence.

Even though the neocortex is largely homogenous, some neuroscientists are quick to point out the differences between neocortical
regions. One region may have more of a certain cell type, another region has extra layers, and other regions may exhibit variations
in connectivity patterns. But there is no question that neocortical regions are remarkably similar and that the variations are relatively
minor. The debate is only about how critical the variations are in terms of functionality.

The neocortical sheet is divided into dozens of regions situated next to each other. Looking at a neocortex you would not see any
regions or demarcations. The regions are defined by connectivity. Regions pass information to each other by sending bundles of
nerve fibers into the white matter just below the neocortex. The nerve fibers reenter at another neocortical region. The connections
between regions define a logical hierarchy. Information from a sensory organ is processed by one region, which passes its output
to another region, which passes its output to yet another region, etc. The number of regions and their connectivity is determined by
our genes and is the same for all members of a species. So, as far as we know, the hierarchical organization of each human’s
neocortex is the same, but our hierarchy differs from the hierarchy of a dog or a whale. The actual hierarchy for some species has
been mapped in detail (Zingg, 2014). They are complicated, not like a simple flow chart. There are parallel paths up the hierarchy
and information often skips levels and goes sideways between parallel paths. Despite this complexity the hierarchical structure of
the neocortex is well established.

We can now see the big picture of how the brain is organized. The entire brain is a hierarchy of brain regions, where each region
interacts with a fully functional stack of evolutionarily older regions below it. For most of evolutionary history new brain regions,
such as the spinal cord, brain stem, and basal ganglia, were heterogeneous, adding capabilities that were specific to particular senses
and behaviors. This evolutionary process was slow. Starting with mammals, evolution discovered a way to extend the brain’s
hierarchy using new brain regions with a homogenous design, an algorithm that works with any type of sensor data and any type
of behavior. This replication is the beauty of the neocortex. Once the universal neocortical algorithms were established, evolution

2 http://humanorigins.si.edu/human-characteristics/brains



could extend the brain’s hierarchy rapidly because it only had to replicate an existing structure. This explains how human brains
evolved to become large so quickly.

Figure 3 a) brain with information flowing posterior to anterior b) logical hierarchical stack showing old brain regions and neocortical regions
(placeholder)

Sensory information enters the human neocortex in regions that are in the rear and side of the head. As information moves up the
hierarchy it eventually passes into regions in the front half of the neocortex. Some of the regions at the very top of the neocortical
hierarchy, in the frontal lobes and also the hippocampus, have unique properties such as the ability for short term memory, which
allows you to keep a phone number in your head for a few minutes. These regions also exhibit more heterogeneity, and some of
them are older than the neocortex. The neocortex in some sense was inserted near the top of the old brain’s hierarchical stack.
Therefore, we first try to understand the homogenous regions that are near the bottom of the neocortical hierarchy. In other words,
we first need to understand how the neocortex builds a basic model of the world from sensory data and how it generates basic
behaviors.

HTM Principle: Common Algorithms

Our theory focuses on the common properties across the neocortex. We strive not to understand vision or hearing or robotics as
separate problems, but to understand how these capabilities are fundamentally all the same, and what set of algorithms can see
AND hear AND generate behavior. Initially, this general approach makes our task seem harder, but ultimately it is liberating. When
we describe or study a particular HTM learning algorithm we often will start with a particular problem, such as vision, to understand
or test the algorithm. But we then ask how the exact same algorithm would work for a different problem such as understanding
language. This process leads to realizations that might not at first be obvious, such as vision being a primarily temporal inference
problem, meaning the temporal order of patterns coming from the retina is as important in vision as is the temporal order of words
in language. Once we understand the common algorithms of the neocortex, we can ask how evolution might have tweaked these
algorithms to achieve even better performance on a particular problem. But our focus is to first understand the common algorithms
that are manifest in all neocortical regions.

Biological Observation: Neurons are Sparsely Activated

The neocortex is made up of neurons. No one knows exactly how many neurons are in a human neocortex, but recent “primate
scale up” methods put the estimate at 86 billion (Herculano-Houzel, 2012). The moment-to-moment state of the neocortex, some
of which defines our perceptions and thoughts, is determined by which neurons are active at any point in time. An active neuron is
one that is generating spikes, or action potentials. One of the most remarkable observations about the neocortex is that no matter
where you look, the activity of neurons is sparse, meaning only a small percentage of them are rapidly spiking at any point in time.
The sparsity might vary from less than one percent to several percent, but it is always sparse.

HTM Principle: Sparse Distributed Representations

The representations used in HTM are called Sparse Distributed Representations, or SDRs. SDRs are vectors with thousands of bits.
At any point in time a small percentage of the bits are 1’s and the rest are 0’s. Our theory explains why it is important that there are
always a minimum number of 1’s distributed in the SDR, and also why the percentage of 1’s must be low, typically less than 2%.
The bits in an SDR correspond to the neurons in the neocortex.

SDRs have some essential and surprising properties. For comparison, consider the representations used in programmable
computers. The meaning of a word in a computer is not inherent in the word itself. If you were shown 64 bits from a location in a
computer’s memory you couldn’t say anything about what it represents. At one moment in the execution of the program the bits
could represent one thing and at another moment they might represent something else, and in either case the meaning of the 64 bits
can only be known by relying on knowledge not contained in the physical location of the bits themselves. With SDRs, the bits of
the representation encode the semantic properties of the representation; the representation and its meaning are one and the same.
Two SDRs that have 1 bits in the same location share a semantic property. The more 1 bits two SDRs share, the more semantically
similar are the two representations. The SDR explains how brains make semantic generalizations; it is an inherent property of the
representation method. Another example of a unique capability of sparse representations is that a set of neurons can simultaneously
activate multiple representations without confusion. It is as if a location in computer memory could hold not just one value but
twenty simultaneous values and not get confused! We call this unique characteristic the “union property” and it is used throughout
HTM for such things as making multiple predictions at the same time.

The use of sparse distributed representations is a key component of HTM. We believe that all truly intelligent systems must use
sparse distributed representations.



Biological Observation: The Inputs and Outputs of the Neocortex

As mentioned earlier, the neocortex appeared recently in evolutionary time. The other parts of the brain existed before the neocortex
appeared. You can think of a human brain as consisting of a reptile brain (the old stuff) with a neocortex (literally “new layer”)
attached on top of it. The older parts of the brain still have the ability to sense the environment and to act. We humans still have a
reptile inside of us. The neocortex is not a stand-alone system, it learns how to interact with and control the older brain areas to
create novel and improved behaviors.

There are two basic inputs to the neocortex. One is data from the senses. As a general rule, sensory data is processed first in the
sensory organs such as the retina, cochlea, and sensory cells in the skin and joints. It then goes to older brain regions that further
process it and control basic behaviors. Somewhere along this path the neurons split their axons in two and send one branch to the
neocortex. The sensory input to the neocortex is literally a copy of the sensory data that the old brain is getting.

The second input to the neocortex is a copy of motor commands being executed by the old parts of the brain. For example, walking
is partially controlled by neurons in the brain stem and spinal cord. These neurons also split their axons in two, one branch generates
behavior in the old brain and the other goes to the neocortex. Another example is eye movements, which are controlled by an older
brain structure called the superior colliculus. The axons of superior colliculus neurons send a copy of their activity to the neocortex,
letting the neocortex know what movement is about to happen. This motor integration is a nearly universal property of the brain.
The neocortex is told what behaviors the rest of the brain is generating as well as what the sensors are sensing. Imagine what would
happen if the neocortex wasn’t informed that the body was moving in some way. If the neocortex didn’t know the eyes were about
to move, and how, then a change of pattern on the optic nerve would be perceived as the world moving. The fact that our perception
is stable while the eyes move tells us the neocortex is relying on knowledge of eye movements. When you touch, hear, or see
something, the neocortex needs to distinguish changes in sensation caused by your own movement from changes caused by
movements in the world. The majority of changes on your sensors are the result of your own movements. This “sensory-motor”
integration is the foundation of how most learning occurs in the neocortex. The neocortex uses behavior to learn the structure of
the world.

Figure 4. showing sensory & motor command inputs to the neocortex (block diagram) (placeholder)

No matter what the sensory data represents - light, sound, touch or behavior - the patterns sent to the neocortex are constantly
changing. The flowing nature of sensory data is perhaps most obvious with sound, but the eyes move several times a second, and
to feel something we must move our fingers over objects and surfaces. Irrespective of sensory modality, input to the neocortex is
like a movie, not a still image. The input patterns completely change typically several times a second. The changes in input are not
something the neocortex has to work around, or ignore; instead, they are essential to how the neocortex works. The neocortex is
memory of time-based patterns.

The primary outputs of the neocortex come from neurons that generate behavior. However, the neocortex never controls muscles
directly; instead the neocortex sends its axons to the old brain regions that actually generate behavior. Thus the neocortex tries to
control the old brain regions that in turn control muscles. For example, consider the simple behavior of breathing. Most of the time
breathing is controlled completely by the brain stem, but the neocortex can learn to control the brain stem and therefore exhibit
some control of breathing when desired.

A region of neocortex doesn’t “know” what its inputs represent or what its output might do. A region doesn’t even “know” where
it is in the hierarchy of neocortical regions. A region accepts a stream of sensory data plus a stream of motor commands. From
these inputs it learns of the changes in the inputs. The region will output a stream of motor commands, but it only knows how its
output changes its input. The outputs of the neocortex are not pre-wired to do anything. The neocortex has to learn how to control
behavior via associative linking.

HTM Principle: Sensory Encoders

Every HTM system needs the equivalent of sensory organs. We call these “encoders.” An encoder takes some type of data—it could
be a number, time, temperature, image, or GPS location—and turns it into a sparse distributed representation that can be digested by
the HTM learning algorithms. Encoders are designed for specific data types, and often there are multiple ways an encoder can
convert an input to an SDR, in the same way that there are variations of retinas in mammals. The HTM learning algorithms will
work with any kind of sensory data as long as it is encoded into proper SDRs.

One of the exciting aspects of machine intelligence based on HTM principles is that we can create encoders for data types that have
no biological counterpart. For example, we have created an encoder that accepts GPS coordinates and converts them to SDRs. This
encoder allows an HTM system to directly sense movement through space. The HTM system can then classify movements, make
predictions of future locations, and detect anomalies in movements. The ability to use non-human senses offers a hint of where
intelligent machines might go. Instead of intelligent machines just being better at what humans do, they will be applied to problems
where humans are poorly equipped to sense and to act.



HTM Principle: HTM Systems are Embedded Within Sensory-motor Systems

To create an intelligent system, the HTM learning algorithms need both sensory encoders and some type of behavioral framework.
You might say that the HTM learning algorithms need a body. But the behaviors of the system do not need to be anything like the
behaviors of a human or robot. Fundamentally, behavior is a means of moving a sensor to sample a different part of the world. For
example, the behavior of an HTM system could be traversing links on the world-wide web or exploring files on a server.

It is possible to create HTM systems without behavior. If the sensory data naturally changes over time, then an HTM system can
learn the patterns in the data, classify the patterns, detect anomalies, and make predictions of future values. The early work on HTM
focuses on these kinds of problems, without a behavioral component. Ultimately, to realize the full potential of HTM, behavior
needs to be incorporated fully.

HTM Principle: HTM Relies On Streaming Data and Sequence Memory

The HTM learning algorithms are designed to work with sensor and motor data that is constantly changing. Sensor input data may
be changing naturally such as metrics from a server or the sounds of someone speaking. Alternately the input data may be changing
because the sensor itself is moving such as moving the eyes while looking at a still picture. At the heart of HTM is a learning
algorithm called Temporal Memory, or TM. As its name implies, Temporal Memory is a memory of sequences, it is a memory of
transitions in a data stream. TM is used in both sensory inference and motor generation. Our theory postulates that every excitatory
neuron in the neocortex is learning transitions of patterns and that the majority of synapses on every neuron are dedicated to learning
these transitions. Temporal Memory is therefore the substrate upon which all neocortical functions are built. TM is probably the
biggest difference between HTM and most other artificial neural networks. HTM starts with the assumption that everything the
neocortex does is based on memory and recall of sequences of patterns.

HTM Principle: On-line Learning

HTM systems learn continuously, which is often referred to as “on-line learning”. With each change in the inputs the memory of
the HTM system is updated. There are no batch learning data sets and no batch testing sets as is the norm for most machine learning
algorithms. Sometimes people ask, “If there are no labeled training and test sets, how does the system know if it is working correctly
and how can it correct its behavior?” HTM builds a predictive model of the world, which means that at every point in time the
HTM-based system is predicting what it expects will happen next. The prediction is compared to what actually happens and forms
the basis of learning. HTM systems try to minimize the error of their predictions.

Another advantage of continuous learning is that the system will constantly adapt if the patterns in the world change. For a
biological organism this is essential to survival. Our theory is built on the assumption that intelligent machines need to continuously
learn as well. However, there will likely be applications where we don’t want a system to learn continuously, but these are the
exceptions, not the norm.

Conclusion

The biology of the neocortex informs our theory and the HTM algorithms. In the following chapters we discuss details and continue
to draw parallels between HTM and the neocortex.
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