Spatial Pooling Algorithm

Chapter Revision History

The table notes major changes between revisions. Minor changes such as small clarifications or formatting changes are not noted.

Version Date Changes Principal Author(s)
Initial release S. Ahmad
Feb 2017 Update to current algorithms M. Taylor & Y. Cui

Important Note to Readers:

The following text gives details of the Spatial Pooling algorithm, including pseudocode and parameters. We highly recommend
that you access some of the other Spatial Pooling resources available in order to understand the high-level concepts and role of
Spatial Pooling in biology, and in HTM. You can find links to the latest Spatial Pooling resources in the Spatial Pooling chapter.

Spatial Pooling Algorithm Details

We first present some important terms, then the high-level steps, followed by details with pseudocode.

Terminology

Column: An HTM region is organized in columns of cells. The SP operates at the column-level, where a column of a
cells function as a single computational unit.

Mini-column: See “Column”

Inhibition: The mechanism for maintaining sparse activations of neurons. In the SP this manifests as columns inhibiting
nearby columns from becoming active.

Inhibition radius: The size of a column’s local neighborhood, within which columns may inhibit each other from
becoming active.

Active duty cycle: A moving average denoting the frequency of column activation.

Overlap duty cycle: A moving average denoting the frequency of the column’s overlap value being at least equal to the
proximal segment activation threshold.

Receptive field: The input space that a column can potentially connect to.

Permanence value: indicates the amount of growth between a mini-column in the Spatial Pooling algorithm and one of
the cells in its receptive field

Permanence threshold: If a synapse’s permanence is above this value, it is considered fully connected. Acceptable
values are [0,1].

Synapse: A junction between cells. In the Spatial Pooling algorithm, synapses on a column’s dendritic segment connect
to bits in the input space. A synapse can be in the following states:

o Connected—permanence is above the threshold.
o Potential—permanence is below the threshold.

o Unconnected—does not have the ability to connect.

Spatial Pooling algorithm steps

1. Start with an input consisting of a fixed number of bits. These bits might represent sensory data or they might come
from another region elsewhere in the HTM system.

2. Initialize the HTM region by assigning a fixed number of columns to the region receiving this input. Each column has
an associated dendritic segment, serving as the connection to the input space. Each dendrite segment has a set of
potential synapses representing a (random) subset of the input bits. Each potential synapse has a permanence value.
These values are randomly initialized around the permanence threshold. Based on their permanence values, some of the
potential synapses will already be connected; the permanences are greater than than the threshold value.

3. For any given input, determine how many connected synapses on each column are connected to active (ON) input bits.
These are active synapses.

4. The number of active synapses is multiplied by a “boosting” factor, which is dynamically determined by how often a
column is active relative to its neighbors.

5. A small percentage of columns within the inhibition radius with the highest activations (after boosting) become active,
and disable the other columns within the radius. The inhibition radius is itself dynamically determined by the spread of
input bits. There is now a sparse set of active columns.

6. The region now follows the Spatial Pooling (Hebbian-style) learning rule: For each of the active columns, we adjust the
permanence values of all the potential synapses. The permanence values of synapses aligned with active input bits are
increased. The permanence values of synapses aligned with inactive input bits are decreased. The changes made to
permanence values may change some synapses from being connected to unconnected, and vice-versa.

7. For subsequent inputs, we repeat from step 3.

Spatial Pooling Pseudocode

This section contains the detailed pseudocode for the Spatial Pooling function, broken down into four phases: initialization, overlap
computation, inhibition, and learning. After initialization (phase 1), every iteration of the Spatial Pooling algorithm’s compute
routine goes through three distinct phases (phase 2 through phase 4) that occur in sequence.

The various data structures and supporting routines used in the code are defined in Table X at the end.

Phase 1 — Initialize Spatial Pooling algorithm parameters

Prior to receiving any inputs, the Spatial Pooling algorithm is initialized by computing a list of initial potential synapses for each
column. This consists of a random set of inputs selected from the input space (within a column’s inhibition radius). Each input is
represented by a synapse and assigned a random permanence value. The random permanence values are chosen with two criteria.
First, the values are chosen to be in a small range around connectedPerm, the minimum permanence value at which a synapse is
considered "connected". This enables potential synapses to become connected (or disconnected) after a small number of training
iterations. Second, each column has a natural center over the input region, and the permanence values have a bias towards this
center, so that they have higher values near the center.

Phase 2 — Compute the overlap with the current input for each column

Given an input vector, this phase calculates the overlap of each column with that vector. The overlap for each column is simply
the number of connected synapses with active inputs, multiplied by the column’s boost factor.

1. for c in columns

2. overlap(c) = 0
3. for s in connectedSynapses(c)
4. overlap(c) = overlap(c) + input(t, s.sourceInput)

5. overlap(c) = overlap(c) * boost(c)

Phase 3 — Compute the winning columns after inhibition

The third phase calculates which columns remain as winners after the inhibition step. localAreaDensity is a parameter that
controls the desired density of active columns within a local inhibition area. Alternatively, the density can be controlled by
parameter numActiveColumnsPerInhArea. When using this method, the localAreaDensity parameter must be less than 0. The
inhibition logic will ensure that at most numActiveColumnsPerInhArea columns become active in each local inhibition area. For
example, if numActiveColumnsPerInhArea is 10, a column will be a winner if it has a non-zero overlap and its overlap score
ranks 10" or higher among the columns within its inhibition radius.

6. for c in columns

7. minLocalActivity = kthScore(neighbors(c), numActiveColumnsPerInhArea)
8. if overlap(c) > stimulusThreshold and

9. overlap(c) = minLocalActivity then

10. activeColumns(t).append(c)

Phase 4 — Update synapse permanences and internal variables

This final phase performs learning, updating the permanence values of all synapses as necessary, as well as the boost values and
inhibition radii. The main learning rule is implemented in lines 14-20. For winning columns, if a synapse is active, its permanence
value is incremented, otherwise it is decremented; permanence values are constrained to be between 0 and 1. Notice that
permanence values on synapses of non-winning columns are not modified.

Lines 21-27 implement boosting. There are two separate mechanisms in place to help a column learn connections. If a column does
not win often enough (as measured by activeDutyCycle) compared to its neighbors, its overall boost value is set to be greater than
1 (line 22-23). If a column is active more frequently than its neighbors, its overall boost value is set to be less than one. The
boostFunction is an exponential function that depends on the difference between the active duty cycle of a column and the average
active duty cycles of its neighbors. If a column's connected synapses do not overlap well with any inputs often enough (as measured
by overlapDutyCycle), its permanence values are boosted (line 24-27). Note that once learning is turned off, boost(c) is frozen.

Finally, at the end of Phase 4 the inhibition radius is recomputed (line 28).

11.for c in activeColumns(t)

12. for s in potentialSynapses(c)

13. if active(s) then

14. s.permanence += synPermActiveInc

15. s.permanence = min(1.0, s.permanence)

l16. else

17. s.permanence -= synPermInactiveDec

18. s.permanence = max(0.0, s.permanence)

19. for c in columns:

20. activeDutyCycle(c) = updateActiveDutyCycle(c)

21. activeDutyCycleNeighbors = mean(activeDutyCycle(neighbors(c))
22. boost(c) = boostFunction(activeDutyCycle(c), activeDutyCycleNeighbors)
23. overlapDutyCycle(c) = updateOverlapDutyCycle(c)

24. if overlapDutyCycle(c) < minDutyCycle(c) then

25. increasePermanences(c, 0.l*connectedPerm)

26.inhibitionRadius = averageReceptiveFieldSize()

The Spatial Pooling algorithm has many parameters that affect the dimensionality, learning mechanisms, and overall
performance. Here we discuss some parameters in detail, and how various values influence Spatial Pooling. The roles of the
parameters were previously described in the pseudocode, and a full list of the algorithm parameters, data structures, and routines
can be found in Tables 1 and 2 below.

Spatial Pooling Algorithm Structure

The column dimensions (columnDimensions) as specified in the Spatial Pooling algorithm parameters define the dimensions for
the HTM region. If we allocate 4096 columns, the region is an array of 4096 columns. However, for a vision system, the same

number of columns could be used as a two-dimensional array, so the region’s columnar structure would be 64x64. We can also
specify a three-dimensional topology.

While the column dimensions control the output shape, the inputs to the columns are controlled by specifying the Spatial Pooling
algorithm’s input parameters. The input dimensions (inputDimensions) are specified just like the column dimensions, and the
number of dimensions must match. The input space that a column can potentially connect to—i.e., the receptive field of the
column—is controlled with the potential radius (potentialRadius) parameter. This value will determine the spread of a column’s
influence across the HTM layer. A small potential radius will keep a column’s receptive field local, while a very large potential
radius will give the column global coverage over the input space.

Inhibition

With global inhibition (globallnhibition=True), the most active columns are selected from the entire layer. Otherwise the winning
columns are selected with respect to the columns’ local neighborhoods. The former offers a significant performance boost, and is
often what we use in practice. With global inhibition turned off, the columnar inhibition takes effect in local neighborhoods. Column
neighborhoods are a function of the inhibition radius (inhibitionRadius), a dynamically calculated measure internal to the Spatial
Pooling algorithm that is a function of the average size of the connected receptive fields of all columns. The receptive field of
columns can be controlled in part by the potential radius parameter above; it cannot be set explicitly because the receptive fields of
Spatial Pooling algorithm columns (and HTM cells in general) are dynamic.

We can however specify the density of active columns, with either localAreaDensity or numActiveColumnsPerInhArea. During
inhibition these parameters will be used to calculate the maximum number of columns to remain ON within a local inhibition area.
With the former parameter, you specify a density, so the actual number of active columns will change as columns’ change the sizes
of their receptive fields. Using the latter parameter, the density will fluctuate as the receptive fields change, but the max number of
active columns remains fixed.

Learning

The learning rate can be specified with the synapse permanence increment and decrement amounts — typically the former is larger
than the latter.

Column Activity

Although a column may win out in competition, its activation must be greater than a threshold (stimulusThreshold) in order to
become active. The intent here is to prevent noise from activating columns, which is helpful towards the spatial pooling goal of
avoiding trivial patterns.

Boosting can be helpful in driving columns to compete for activation. Boosting is monitored by both the activity and overlap duty
cycles (activeDutyCycle(c) and overlapDutyCycle(c), respectively). Following inhibition, if a column’s active duty cycle falls
below the active duty cycles of neighboring columns, then its internal boost factor (boost(c)) will increase above one. If a column's
active duty cycle arises above the active duty cycles of neighboring columns, its boost factor will decrease below one This helps
drive the competition amongst columns and achieve the spatial pooling goal of using all the columns. Before inhibition, if a
column’s overlap duty cycle is below its minimum acceptable value (calculated dynamically as a function of
minPctOverlapDutyCycle and the overlap duty cycle of neighboring columns), then all its permanence values are boosted by the
increment amount. A subpar duty cycle implies either a column's previously learned inputs are no longer ever active, or the vast
majority of them have been "hijacked" by other columns. By raising all synapse permanences in response to a subpar duty cycle
before inhibition, we enable a column to search for new inputs.

The following tables summarize the Spatial Pooling algorithm data structures, routines, and parameters, including recommended
parameter settings for typical use cases.

Columns

List of all columns.

The total number of columns in the Spatial Pooling algorithm, and the HTM region. This

columnCount is task dependent but we recommend a minimum value of 2048.

input(t,j) The input to this level at time t. input(t, j) is 1 if the j'th input is on.

overlap(c) The Spatial Pooling algorithm overlap of column ¢ with a particular input pattern.
activeColumns(?) List of column indices that are winners due to bottom-up input.

numActiveColumnsPerInhArea

A parameter controlling the number of columns that will be winners after the inhibition
step. We usually set this to be 2% of the expected inhibition radius. For 2048 columns and
global inhibition, this is set to 40. We recommend a minimum value of 25.

inhibitionRadius

Average connected receptive field size of the columns.

neighbors(c)

A list of all the columns that are within inhibitionRadius of column c.

stimulusThreshold

A minimum number of inputs that must be active for a column to be considered during the
inhibition step. This is roughly the background noise level expected out of the encoder and
is often set to a very low value (0 to 5). The system is not very sensitive to this parameter;
set to 0 if unsure.

boost(c)

The boost value for column ¢ as computed during learning — used to increase the overlap
value for inactive columns.

boostStrength

A number greater or equal than 0.0 to control the strength of boosting. No boosting is
applied if boostStrength=0.

synapse

A data structure representing a synapse, containing a permanence value and the source
input index.

potentialPct

The percent of the inputs, within a column's potential radius, that are initialized to be in
this column’s potential synapses. This should be set so that on average, at least 15-20
input bits are connected when the Spatial Pooling algorithm is initialized. For example,
suppose the input to a column typically contains 40 ON bits and that permanences are
initialized such that 50% of the synapses are initially connected. In this case you will want
potentialPct to be at least 0.75 since 40*0.5%0.75 = 15.

connectedPerm

If the permanence value for a synapse is greater than this value, it is said to be connected.
This is usually set to 0.2. The Spatial Pooling algorithm is not sensitive to this parameter.

potentialSynapses(c)

The list of potential synapses and their permanence values for this column.

connectedSynapses(c)

A subset of potentialSynapses(c) where the permanence value is greater than
connectedPerm. These are the bottom-up inputs that are currently connected to column c.

synPermActivelnc

Amount permanence values of active synapses are incremented during learning. This
parameter is somewhat data dependent. (The amount of noise in the data will determine
the optimal ratio between synPermActivelnc and synPermInactiveDec.) Usually set to a
small value, such as 0.03

synPermlInactiveDec

Amount permanence values of inactive synapses are decremented during learning. Usually
set to a value smaller than the increment, such as 0.015.

activeDutyCycle(c)

A sliding average representing how often column c has been active after inhibition (e.g.
over the last 1000 iterations).

overlapDutyCycle(c)

A sliding average representing how often column ¢ has had significant overlap (i.e. greater
than stimulusThreshold) with its inputs (e.g. over the last 1000 iterations).

Table 1. Variables and data structures used in the Spatial Pooling pseudocode and NuPIC implementation. For the parameters we
include settings that work well under a wide range of scenarios (italicized above).

kthScore(cols, k)

Given the list of columns, return the k'th highest overlap value.

updateActiveDutyCycle(c)

Computes a moving average of how often column c¢ has been active after inhibition.

updateOverlapDutyCycle(c)

Computes a moving average of how often column c has overlap greater than
stimulusThreshold.

averageReceptiveFieldSize()

The radius of the average connected receptive field size of all the columns. The connected
receptive field size of a column includes only the connected synapses (those with
permanence values >= connectedPerm). This is used to determine the extent of lateral
inhibition between columns.

maxDutyCycle(cols)

Returns the maximum active duty cycle of the columns in the given list of columns.

active(s)

True if synapse s is active, i.e. the input connected to synapse s is ON.

increasePermanences(c, s)

Increase the permanence value of every synapse in column c by a scale factor s.

boostFunction(c)

Returns the boost value of a column. The boost value is a positive scalar value. It is above
one if the active duty cycle is above the mean active duty cycles of neighboring columns.
It is less than one if a column has higher active duty cycle than its neighbors

Table 2. Supporting routines used in the Spatial Pooling pseudocode. They may have different names in the NuPIC codebase.

